Solving a system of nonlinear Fractional Differential Equations via novel best proximity pair results in regular semimetric space
Resumen
This paper is devoted to examining the existence of optimal solutions for a coupled system of differential equations characterized by right sided-Hilfer fractional derivatives under initial conditions as form: \begin{align*} \begin{cases} \prescript{\mathsf{H}\!}{}{\mathbb{D}}_{b^+}^{p,q; \psi} \mu_1(\upkappa)= \lambda_1(\upkappa, \mu_2(\upkappa)),\\ \prescript{ \mathsf{H}\!}{}{\mathbb{D}}_{b^+}^{p,q; \psi} \mu_2( \upkappa)= \lambda_2( \upkappa, \mu_1 ( \upkappa)), \end{cases} \end{align*} for $b< \upkappa \leq v$. To this end, we develop a series of best proximity pair theorems for a new category of proximal contractions, referred to as the $\alpha$-generalized Geraghty proximal interpolative contraction pair, formulated within the framework of a regular semimetric space $(\mathfrak{Q},\rho,\Phi)$.Descargas
La descarga de datos todavía no está disponible.
Publicado
2025-12-20
Sección
Advances in Nonlinear Analysis and Applications
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



