Applications of the Cauchy-Schwarz inequality for the numerical radius

  • Mojtaba Bakherad University of Sistan and Baluchestan
  • Fuad Kittaneh

Resumen

The main goal of this article is to establish several new norm and numerical radius inequalities for operators based on the angle between two vectors in Hilbert space. These enhancements and extensions are achieved through the use of the polar and Cartesian decompositions of operators. In particular, it is proved that, if $X\in \mathscr B\left( \mathscr{H} \right)$ has the polar decomposition $X=U\vert X\vert $ and $\mu(\psi)=\frac{1}{4}(2+\cos\psi \cot\psi \log(\frac{1+\sin\psi}{1-\sin\psi}))$, then
\begin{equation*}
\omega^{2r}(X)\le \mu^{2r}(\theta)\left\Vert \frac{1}{p}f^{2pr}(\vert X \vert)+\frac{1}{q} g^{2qr}(\vert X^*\vert) \right\Vert,
\end{equation*}
where $\theta_{X,x}=\angle_{ f(\vert X\vert) x, g(\vert X\vert)U^* x }$, either $0\le \theta< \theta_{X,x} \le\frac{\pi}{2}$ or $\frac{\pi}{2}\le \theta_{X,x} <\theta\le\pi $ for all unit vectors $x\in \mathscr{H}$, $f,g$ are nonnegative continuous functions on $[0,+\infty) $ satisfying the relation $f(t)g(t)=t \,\,(t \in [0,+\infty))$, $r\ge1$, $p,q>1$ and $\frac{1}{p}+\frac{1}{q}=1$.

Descargas

La descarga de datos todavía no está disponible.
Publicado
2026-02-15
Sección
Special Issue: Advances in Mathematical Sciences