Rings in Which Every Element is Sum of a Unit and Finitely Many Nonzero Idempotents
Resumen
We define a ring R to be a UI - ring when each element of R can be represented as the sum
of a unit and finitely many nonzero idempotents of R. In this article we have shown that semisimple rings,
artinian rings and semiprimary rings are UI - ring. Also we have proved if R is a UI - ring then for every
n > 1, Mn(R) is a UI - ring and for each n > 1, R is a UI - ring if and only if Tn(R) is a UI - ring.
Descargas
La descarga de datos todavía no está disponible.
Publicado
2026-02-03
Sección
International Conf. on Recent Trends in Appl. and Comput. Mathematics - ICRTACM
Derechos de autor 2026 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



