Triangular Norm-Based Interval Valued L-Fuzzy Soft Ideals in Nearrings

  • Jagadeesha B St Joseph Engineering College, Vamanjoor Mangaluru
  • Sabina Rachana Crasta St Joseph Engineering College, Vamanjoor, Mangaluru, Karnataka India 575028

Resumen

This study explores interval-valued L-fuzzy soft ideals within nearrings, where this structure
is established over a complete bounded lattice. The approach employs interval-valued triangular norms and conorms as tools for handling graded membership and uncertainty. The algebraic characteristics of these ideals are examined, together with their behavior under nearring homomorphisms and the corresponding coset structures. We also analyze the relationship between such ideals and their associated level sets, thereby extending the scope of fuzzy soft algebraic theory. The framework not only brings together earlier notions of fuzzy and soft ideals but also introduces threshold-based flexibility, which broadens its range of applicability. Possible applications include decision-making, reasoning under uncertainty, and computational intelligence,
particularly in contexts where algebraic precision and soft set-based modeling need to be combined.

Descargas

La descarga de datos todavía no está disponible.

Citas

1. U. Acar, F. Koyuncu, B. Tanay, Soft sets and soft rings, Comput. Math. Appl. 59 (2010) 3458–3463.
2. H. Aktas, N. Cagman, Soft sets and soft group, Inform. Sci. 177 (2007) 2726–2735.
3. A. Aygunoglu, H. Aygun, Introduction to fuzzy soft groups, Comput. Math. Appl. 58 (2009) 1279–1286.
4. B. C. Bedregal, A. Takahashi, The best interval representations of t-norms and automorphisms, Fuzzy Sets Syst. 157
(24) (2006) 3220–3230.
5. C. Bertoluzza, V. Doldi, On the distributivity between t-norms and t-conorms, Fuzzy Sets Syst. 142 (2004) 85–104.
6. S. Bhavanari, S. P. Kuncham, Nearrings, fuzzy ideals and graph theory, Chapman and Hall/CRC Press, 2013.
7. B. Davvaz, Fuzzy ideals of nearring with interval valued membership functions, J. Sci. Islam. Repub. Iran 12 (2001)
171–175.
8. F. Feng, C. Li, B. Davvaz, M. I. Ali, Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft
Comput. 14 (2010) 899–911.
9. F. Feng, X. Liu, V. L. Fotea, Y. B. Jun, Soft sets and soft rough sets, Inform. Sci. 181 (2011) 1125–1137.
10. G. Gratzer, Lattice Theory: Foundation, Birkhauser Verlag, 2011.
11. W. X. Gu, S. Y. Li, D. G. Chen, Y. H. Lu, The generalized t-norms and TLPF-groups, Fuzzy Sets Syst. 72 (1995)
357–364.
12. E. Inan, M. A. Ozturk, Fuzzy soft rings and fuzzy soft ideals, Neural Comput. Appl. 21 (1) (2012). DOI 10.1007/s00521-
011-0550-5.
13. B. Jagadeesha, B. S. Kedukodi, S. P. Kuncham, Interval Valued L-fuzzy Ideals based on t-norms and t-conorms, J.
Intell. Fuzzy Systems 28 (6) (2015) 2631–2641.
14. B. Jagadeesha, S. P. Kuncham, B. S. Kedukodi, On Implications on a Lattice, Fuzzy Inform. Engg. 8 (4) (2016) 411–425.
15. B. S. Kedukodi, S. P. Kuncham, B. Jagadeesha, Interval valued L-fuzzy prime ideals, triangular norms and partially
ordered groups, Soft Comput. (2017). doi.org/10.1007/s00500-017-2798-x.

16. K. Koppula, B. S. Kedukodi, S. P. Kuncham, Markov chains and rough sets, Soft Comput. (2018).
doi.org/10.1007/s00500-018-3298-3.
17. E. P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Academic Publishers, Netherlands, 2000.
18. S. P. Kuncham, B. Jagadeesha, B. S. Kedukodi, Interval Valued L-fuzzy Cosets of Nearrings and Isomorphism Theo￾rems, Afrika Mat. 27 (2016) 393–408.
19. X. Ma, J. Zhan, B. Davvaz, Y. B. Jun, Some kinds of (ϵ, ϵ, ∨q)-interval-valued fuzzy ideals of BCI-algebras, Inform.
Sci. 178 (2008) 3738–3754.
20. P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy Math. 9 (2001) 589–602.
21. P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555–562.
22. D. Molodtsov, Soft set theory – First results, Comput. Math. Appl. 37 (1999) 19–31.
23. D. Meng, X. Zhang, K. Qin, Soft rough fuzzy sets and soft fuzzy rough sets, Comput. Math. Appl. 62 (2011) 4635–4645.
24. P. Mujumdar, S. K. Samata, Generalized fuzzy soft sets, Comput. Math. Appl. 50 (2010) 1425–1432.
25. M. A. Ozturk, E. Inan, Fuzzy soft subnearrings and (ϵ, ϵ, ∨q)-fuzzy soft subnearrings, Comput. Math. Appl. 63 (2012)
617–628.
26. X. Yang, T. Y. Lin, J. Yang, Y. Li, D. Yu, Combination of interval valued fuzzy set and soft set, Comput. Math. Appl.
58 (2009) 521–527.
Publicado
2026-02-04
Sección
International Conf. on Recent Trends in Appl. and Comput. Mathematics - ICRTACM