Stability of the sine addition-subtraction law
Resumen
In this paper, we investigate the stability of the functional equation
\[
f(xy) = f(x)g(y) + \beta\, g(x)f(y) + \gamma\, f(x)f(y), \qquad x, y \in S,
\]
where \(S\) is a semigroup, \(f, g : S \to \mathbb{C}\) are two unknown functions, \(\beta \in \mathbb{C} \setminus \{0\}\) and \(\gamma \in \mathbb{C}\) are fixed constants. We extend our analysis to the functional equation
\[
f(x\sigma(y)) = f(x)g(y) + \beta\, g(x)f(y) + \gamma\, f(x)f(y), \qquad x, y \in S,
\]
where \(\sigma : S \to S\) is an involutive automorphism.
Descargas
Derechos de autor 2026 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



