<b>Eigenvalues of an Operator Homogeneous at the Infinity</b> - 10.5269/bspm.v28i1.10815
Résumé
In this paper, we show the existence of a sequences of eigenvalues for an operator homogenous at the infinity, we give his variational formulation and we establish the simplicity of all eigenvalues in the case N = 1. Finally we study the solvability of the problem \mathcal{A}u = -div (A(x,\nabla u)) = f(x,u) + h, in \Omega, u=0 on \partial \Omega, as well as the spectrum of G_0'(u)= \lambda m |u|^{p-2}u in \Omega, u=0 on \partial \Omega.
Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2010-08-05
Numéro
Rubrique
Articles
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).