<b>Regularity of the solutions to a nonlinear boundary problem with indefinite weight</b> - doi: 10.5269/bspm.v29i1.11402

  • Aomar Anane Département de Mathématiques et Informatique, Oujda,
  • Omar Chakrone Université Mohammed 1er
  • Najat Moradi Université Mohammed 1er

Résumé

In this paper we study the regularity of the solutions to the problem

Delta_p u = |u|^{p−2}u in the bounded smooth domain
Omega ⊂ R^N,

with

|∇u|^{p−2} partial_{nu} u = lambda V (x)|u|^{p−2}u + h as a nonlinear boundary condition, where partial Omega is C^{2,beta}, with beta ∈]0, 1[, and V is a weight in L^s(partial Omega) and h ∈ L^s(partial Omega ) for some s ≥ 1. We prove that all solutions are in L^{infty}(Omega) cap L^{infty}(Omega), and using the D.Debenedetto’s theorem of regularity
in [1] we conclude that those solutions are in C^{1,alpha} overline{Omega}) for some alpha ∈ ]0, 1[.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.
Rubrique
Articles