Solutions for Steklov boundary value problems involving p(x)-Laplace operators
Résumé
In this paper we study the nonlinear Steklov boundary value problemof the following form:
$$
(\mathcal{S})
\left\{
\begin{array}{lr}
~~\Delta_{p(x)} u=|u|^{p(x)-2}u & \mbox{in}~~ \Omega , \\
~~~|\nabla u|^{p(x)-2}\frac{\partial u}{\partial \nu}=\lambda f(x,u) & \mbox{on}~ \partial\Omega .
\end{array}
\right.
$$
Using the variational method, under appropriate assumptions on $f$, we establish the existence of at least three solutions of this problem.
Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2014-01-29
Numéro
Rubrique
Articles
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).