Multiplicativity of left centralizers forcing additivity
Résumé
A multiplicative left centralizer for an associative ring R is a map satisfying T(xy) = T\(x)y for all x,y in R. T is not assumed to be additive. In this paper we deal with the additivity of the multiplicative left centralizers in a ring which contains an idempotent element. Specially, we study additivity for multiplicative left centralizers in prime and semiprime rings which contain an idempotent element.Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2014-01-29
Numéro
Rubrique
Articles
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).