An inverse Sturm-Liouviile problem for a Hill's equation
Résumé
In this paper, we consider Hill's equation -y′′+q(x)y=λy, where q∈L¹[0,π]. A Hill equation defined on a semi-infinite interval will in general have a mixed spectrum. The continuous spectrum will in general consist of an infinite number of disjoint finite intervals. Between these intervals, point eigenvalues can exist. It is shown that under suitable hypotheses on the spectrum a full knowledge of the spectrum leads to a unique determination of the potential function in the Hill's equation. Moreover , it is shown here that if q(x) is prescribed over the interval [(π/2),π], then a single spectrum suffices to determined q(x) on the interval [0,(π/2)].Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2014-01-29
Numéro
Rubrique
Research Articles
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).