Coefficient estimate of p-valent Bazilevic functions with a bounded positive real part
Résumé
By considering a $p-$valent Bazilevi\v{c} function in the open unit disk$\triangle$ which maps $\triangle$ onto the strip domain $w$ with$p\alpha < \Re\, w < p \beta,$ we estimate bounds of coefficients and solve Fekete-Szeg\"{o} problem forfunctions in this class.\\Téléchargements
Références
A. W. Goodman, Univalent functions, Vol. I and II, Mariner, Tampa, Florida, 1983.
F. Keogh and E. Merkers, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12.
K. Kuroki and S. Owa, Notes on new class for certain analytic functions, Advances in Mathematice: Scientific. Journal 1 (2012), no. 2, 127-131.
M. S. Robertson, On the theory of univalent functions, Ann. Math. 37 (1936), 374-408.
W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc., 48 (1943), 48-82.
Y. J. Sim and O.S. Kwon, Notes on analytic functions with a bounded positive real part, Journal of Inequalities and Applications, 370 (2013), 1-6.
B. A. Uralegaddi, M. D. Ganigi and S. M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math. 25 (1994), 225-230.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).