Coefficient estimate of p-valent Bazilevic functions with a bounded positive real part

  • O. S. Babu Dr. Ambedkar Govt. Arts College
  • C. Selvaraj Presidency College (Autonomous)
  • S. Logu Presidency College (Autonomous)
  • Gangadharan Murugusundaramoorthy VIT UniversitySchool of Advanced Sciences https://orcid.org/0000-0001-8285-6619

Résumé

By considering a $p-$valent Bazilevi\v{c} function in the open unit disk$\triangle$ which maps $\triangle$ onto the strip domain $w$ with$p\alpha < \Re\, w < p \beta,$ we estimate bounds of coefficients and solve Fekete-Szeg\"{o} problem forfunctions in this class.\\

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Bibliographies de l'auteur

O. S. Babu, Dr. Ambedkar Govt. Arts College

Department of Mathematics

C. Selvaraj, Presidency College (Autonomous)

Department of Mathematics

S. Logu, Presidency College (Autonomous)

Department of Mathematics

Gangadharan Murugusundaramoorthy, VIT UniversitySchool of Advanced Sciences

G.Murugusundaramoorthy,Ph.D

Sr.Professor of Mathematics,

School of Advanced Sciences,

VIT UNIVERSITY,Vellore-632 014

Références

A. W. Goodman, Univalent functions, Vol. I and II, Mariner, Tampa, Florida, 1983.

F. Keogh and E. Merkers, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12.

K. Kuroki and S. Owa, Notes on new class for certain analytic functions, Advances in Mathematice: Scientific. Journal 1 (2012), no. 2, 127-131.

M. S. Robertson, On the theory of univalent functions, Ann. Math. 37 (1936), 374-408.

W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc., 48 (1943), 48-82.

Y. J. Sim and O.S. Kwon, Notes on analytic functions with a bounded positive real part, Journal of Inequalities and Applications, 370 (2013), 1-6.

B. A. Uralegaddi, M. D. Ganigi and S. M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math. 25 (1994), 225-230.

Publiée
2015-06-01
Rubrique
Research Articles