On timelike parallel pi-Equidistant ruled surfaces with a timelike base curve in the Minkowski 3-space R3 1
Résumé
In this paper, timelike parallel pi-equidistant ruled surfaces with atimelike base curve are dened and the shape operators, shape tensor, the qth fundamental forms and the characteristic polynomials of the shape tensors of thesesurfaces are obtained. Then, some relations between them are found. Finally, anexample for the timelike parallel p2 equidistant ruled surfaces by a timelike basecurve in the Minkowski 3-space R31 is given.
Téléchargements
Références
K. Akutagawa and S. Nishikawa, The Gauss map and spacelike surfaces with prescribed mean curvature in Minkowski 3-space.Tohoku Math. J. 42, 67-82, (1990).
J. K. Beem and P. E. Ehrlich, Global Lorentzian geometry, Marcel Dekkar, New York, 1981.
T. Ikawa, On curves and submanifolds in indefinite Riemannian manifold. Tsukuba J. Math. 9 (2), 353-371, (1985).
M. Masal and N. Kuruoğlu, Some characteristic properties of the parallel p-equidistant ruled surfaces in the Euclidean space. Pure and Applied Mathematika Sciences L, (1-2), 35-42, (1999).
M. Masal and N. Kuruoğlu, Some characteristics properties of the shape operators of parallel p-equidistant ruled surfaces. Bulletin of Pure and Applied Sciences 19E.(2), 361-364, (2000).
B. O' Neill, Semi Riemannian geometry, Academic Press, New York, 1983.
A. Turgut and H. H. Hacısalihoğlu, Timelike ruled surfaces in the Minkowski 3-space. Far East J.Math.Sci. 5 (1), 83-90, (1997).
A. Turgut and H. H. Hacısalihoğlu, On the distribution parameter of timelike ruled surfaces in the Minkowski 3-space. Far East J.Math. Sci. 5 (2), 321-328, (1997).
A. Turgut and H. H. Hacısalihoğlu, Timelike ruled surfaces in the Minkowski 3-space-II. Tr. J. of Mathematics 22, 33-46, (1998).
I. E. Valeontis, Parallel p-Äquidistante regelflächen. Manuscripta Math. 54 , 391-404, (1986).
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).