On symmetric biadditive mappings of semiprime rings

  • Asma Ali Department of Mathematics, Aligarh Muslim University India
  • Khalid Ali Hamdin Department of Mathematics Aligarh Muslim University, Aligarh-202002 India
  • Shahoor Khan Department of Mathematics Aligarh Muslim University, Aligarh-202002 India

Résumé

Let R be a ring with centre Z(R). A mapping D(., .) : R× R −→ R is
said to be symmetric if D(x, y) = D(y, x) for all x, y ∈ R. A mapping f : R −→ R
defined by f(x) = D(x, x) for all x ∈ R, is called trace of D. It is obvious that
in the case D(., .) : R × R −→ R is a symmetric mapping, which is also biadditive
(i.e. additive in both arguments), the trace f of D satisfies the relation f(x + y) =
f(x) + f(y) + 2D(x, y), for all x, y ∈ R. In this paper we prove that a nonzero left ideal
L of a 2-torsion free semiprime ring R is central if it satisfies any one of the following
properties: (i) f(xy) ∓ [x, y] ∈ Z(R), (ii) f(xy) ∓ [y, x] ∈ Z(R), (iii) f(xy) ∓ xy ∈
Z(R), (iv) f(xy)∓yx ∈ Z(R), (v) f([x, y])∓[x, y] ∈ Z(R), (vi) f([x, y])∓[y, x] ∈ Z(R),
(vii) f([x, y])∓xy ∈ Z(R), (viii) f([x, y])∓yx ∈ Z(R), (ix) f(xy)∓f(x)∓[x, y] ∈ Z(R),
(x) f(xy)∓f(y)∓[x, y] ∈ Z(R), (xi) f([x, y])∓f(x)∓[x, y] ∈ Z(R), (xii) f([x, y])∓f(y)∓
[x, y] ∈ Z(R), (xiii) f([x, y])∓f(xy)∓[x, y] ∈ Z(R), (xiv) f([x, y])∓f(xy)∓[y, x] ∈ Z(R),
(xv) f(x)f(y) ∓ [x, y] ∈ Z(R), (xvi) f(x)f(y) ∓ [y, x] ∈ Z(R), (xvii) f(x)f(y) ∓ xy ∈
Z(R), (xviii) f(x)f(y) ∓ yx ∈ Z(R), (xix) f(x) ◦ f(y) ∓ [x, y] ∈ Z(R), (xx) f(x) ◦
f(y) ∓ xy ∈ Z(R), (xxi) f(x) ◦ f(y) ∓ yx ∈ Z(R), (xxii) f(x)f(y) ∓ x ◦ y ∈ Z(R),
(xxiii) [x, y] − f(xy) + f(yx) ∈ Z(R), for all x, y ∈ R, where f stands for the trace of a
symmetric biadditive mapping D(., .) : R × R −→ R.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Bibliographies de l'auteur

Asma Ali, Department of Mathematics, Aligarh Muslim University India
Mathematics
Khalid Ali Hamdin, Department of Mathematics Aligarh Muslim University, Aligarh-202002 India
Mathematics
Shahoor Khan, Department of Mathematics Aligarh Muslim University, Aligarh-202002 India
Mathematics
Publiée
2015-09-30
Rubrique
Articles