Modified finite difference method for solving fractional delay differential equations

  • Behrouz Parsa Moghaddam Islamic Azad University
  • Zeynab Salamat Mostaghim Islamic Azad University

Résumé

In this paper we present and discuss a new numerical scheme for solving fractional delay differential equations of the general
form:
$$D^{\beta}_{*}y(t)=f(t,y(t),y(t-\tau),D^{\alpha}_{*}y(t),D^{\alpha}_{*}y(t-\tau))$$
on $a\leq t\leq b$,$0<\alpha\leq1$,$1<\beta\leq2$ and under the following interval and boundary conditions:\\
$y(t)=\varphi(t) \qquad\qquad -\tau \leq t \leq a,$\\
$y(b)=\gamma$\\
where $D^{\beta}_{*}y(t)$,$D^{\alpha}_{*}y(t)$ and $D^{\alpha}_{*}y(t-\tau)$ are the standard Caputo fractional derivatives, $\varphi$ is the initial value and $\gamma$ is a smooth function.\\
We also provide this method for solving some scientific models. The obtained results show that the propose method is very
effective and convenient.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Bibliographies de l'auteur

Behrouz Parsa Moghaddam, Islamic Azad University
Islamic Azad University, Lahijan Branch, Department of mathematics, Lahijan, Iran
Zeynab Salamat Mostaghim, Islamic Azad University
Islamic Azad University, Lahijan Branch, Department of mathematics, Lahijan, Iran
Publiée
2016-01-16
Rubrique
Research Articles