Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with L1 data

  • Elemine Vall Mohamed Saad Bouh University of Sidi Mohamed Ibn Abdellah, Faculty of Sciences Dhar El Mahraz, Laboratory LAMA, Department of Mathematics, B.P. 1796 Atlas Fez
  • A. Ahmed University of Sidi Mohamed Ibn Abdellah, Faculty of Sciences Dhar El Mahraz, Laboratory LAMA, Department of Mathematics, B.P. 1796 Atlas Fez
  • A. Touzani University of Sidi Mohamed Ibn Abdellah, Faculty of Sciences Dhar El Mahraz, Laboratory LAMA, Department of Mathematics, B.P. 1796 Atlas Fez
  • A. Benkirane University of Sidi Mohamed Ibn Abdellah, Faculty of Sciences Dhar El Mahraz, Laboratory LAMA, Department of Mathematics, B.P. 1796 Atlas Fez

Resumen

We prove existence of solutions for strongly nonlinear elliptic equations of the form $$ \left\{\begin{array}{c} A(u)+g(x,u,\nabla u)=f+\mbox {div}(\phi(u))\quad \textrm{in }\Omega, \\ u\equiv0\quad \partial \Omega. \end{array} \right.$$ Where $A(u)=-\mbox {div}(a(x,u,\nabla u))$ be a Leray-Lions operator defined in $D(A)\subset W^{1}_{0}L_\varphi(\Omega) \rightarrow W^{-1}_{0}L_\psi(\Omega)$, the right hand side belongs in $ L^{1}(\Omega)$, and $\phi\in C^{0}(\mathbb{R},\mathbb{R}^N)$, without assuming the $\Delta_{2}$-condition on the Musielak function.

Descargas

La descarga de datos todavía no está disponible.
Publicado
2018-01-01
Sección
Articles