Rotational hypersurfaces with $L_r$-pointwise 1-type Gauss map
Résumé
In this paper, we study hypersurfaces in $\E^{n+1}$ which Gauss map $G$ satisfies the equation $L_rG = f(G + C)$ for a smooth function $f$ and a constant vector $C$, where $L_r$ is the linearized operator of the $(r + 1)$th mean curvature of the hypersurface, i.e., $L_r(f)=tr(P_r\circ\nabla^2f)$ for $f\in \mathcal{C}^\infty(M)$, where $P_r$ is the $r$th Newton transformation, $\nabla^2f$ is the Hessian of $f$, $L_rG=(L_rG_1,\ldots,L_rG_{n+1}), G=(G_1,\ldots,G_{n+1})$. We show that a rational hypersurface of revolution in a Euclidean space $\E^{n+1}$ has $L_r$-pointwise 1-type Gauss map of the second kind if and only if it is a right n-cone.
Téléchargements
Copyright (c) 2017 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).