On (weakly) precious rings associated to central polynomials
Résumé
Let R be an associative ring with identity and let g(x) be a fixed polynomial over the center of R. We define R to be (weakly) g(x)-precious if for every element a∈R, there are a zero s of g(x), a unit u and a nilpotent b such that (a=±s+u+b) a=s+u+b. In this paper, we investigate many examples and properties of (weakly) g(x)-precious rings. If a and b are in the center of R with b-a is a unit, we give a characterizations for (weakly) (x-a)(x-b)-precious rings in terms of (weakly) precious rings. In particular, we prove that if 2 is a unit, then a ring is precious if and only it is weakly precious. Finally, for n∈ℕ, we study (weakly) (xⁿ-x)-precious rings and clarify some of their properties.Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2018-04-01
Numéro
Rubrique
Articles
Copyright (c) 2017 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).