The stable subgroup graph

  • Behnaz Tolue Hakim Sabzevari University

Résumé

In this paper we introduce stable subgroup graph associated to the group $G$. It is a graph with vertex set all subgroups of $G$ and two distinct subgroups $H_1$ and $H_2$ are adjacent if $St_{G}(H_1)\cap H_2\neq 1$ or $St_{G}(H_2)\cap H_1\neq 1$. Its planarity is discussed whenever $G$ is an abelian group, $p$-group, nilpotent, supersoluble or soluble group. Finally, the induced subgraph of stable subgroup graph with vertex set whole non-normal subgroups is considered and its planarity is verified for some certain groups.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Behnaz Tolue, Hakim Sabzevari University
Department of Pure Mathematics
Publiée
2018-07-01
Rubrique
Articles