Numerical bifurcation and stability analysis of an predator-prey system with generalized Holling type III functional response
Resumo
We perform a bifurcation analysis of a predator-prey model with Holling functional response. The analysis is carried out both analytically and numerically. We use dynamical toolbox MATCONT to perform numerical bifurcation analysis. Our bifurcation analysis of the model indicates that it exhibits numerous types of bifurcation phenomena, including fold, subcritical Hopf, cusp, Bogdanov-Takens. By starting from a Hopf bifurcation point, we approximate limit cycles which are obtained, step by step, using numerical continuation method and compute orbitally asymptotically stable periodic orbits.Downloads
Não há dados estatísticos.
Publicado
2018-07-01
Edição
Seção
Artigos
Copyright (c) 2017 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).