Properties of the first eigenvalue with sign-changing weight of the discrete p-Laplacian and applications
Résumé
By establishing some results around the first eigenvalue λ1(m) for the following problem: -Δ(φp(Δu(k - 1)))= λm(k)φp(u(k)); k∈ [1; n]; u(0) = 0 = u(n + 1); where m ∈ M([1; n]) = {m : [1; n] → R /∃ k∈ [1; n]; m(k) > 0} ; as the constant sign of the first eigenfunction with λ1(m); the simplicity of λ1(m); the strict monotonicity property with respect the weight and sign change of any eigenfunction with ( λ > λ1(m)); we prove the existence and non-existence of solutions of the problem (1.1).Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2018-04-01
Numéro
Rubrique
Articles
Copyright (c) 2017 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).