On a generalization of prime submodules of a module over a commutative ring
Résumé
Let $R$ be a commutative ring with identity, and $n\geq 1$ an integer. A proper submodule $N$ of an $R$-module $M$ is called an $n$-prime submodule if whenever $a_1 \cdots a_{n+1}m\in N$ for some non-units $a_1, \ldots , a_{n+1}\in R$ and $m\in M$, then $m\in N$ or there are $n$ of the $a_i$'s whose product is in $(N:M)$. In this paper, we study $n$-prime submodules as a generalization of prime submodules. Among other results, it is shown that if $M$ is a finitely generated faithful multiplication module over a Dedekind domain $R$, then every $n$-prime submodule of $M$ has the form $m_1\cdots m_t M$ for some maximal ideals $m_1,\ldots,m_t$ of $R$ with $1\leq t\leq n$.
Téléchargements
Copyright (c) 2017 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



