Cryptography based on the Matrices
Résumé
In this work we introduce a new method of cryptography based on the matrices over a finite field $\mathbb{F}_{q}$, were $q$ is a power of a prime number $p$. The first time we construct thematrix $M=\left(
\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{3} \\
\end{array}
\right)
$ were \ $A_{i}$ \ with $i \in \{1, 2, 3 \}$ is the matrix of
order $n$ \ in \ $\mathcal{M}(\mathbb{F}_{q})$ - the set of
matrices with coefficients in $\mathbb{F}_{q}$ - and $0$ is the zero matrix of order $n$. We prove that $M^{l}=\left(
\begin{array}{cc}
A_{1}^{l} & (A_{2})_{l} \\
0 & A_{3}^{l} \\
\end{array}
\right)
$ were $(A_{2})_{l}=\sum\limits_{k=0}^{l-1}
A_{1}^{l-1-k}A_{2}A_{3}^{k}$ for all $l\in \mathbb{N}^{\ast}$. After we will make a cryptographic scheme between the two traditional entities Alice and Bob.
Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2017-09-23
Numéro
Rubrique
Articles
Copyright (c) 2017 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).