$W^{1,N}$ versus $C^1$ local minimizer for a singular functional with Neumann boundary condition
Résumé
Let $\Omega\subset\R^N,$ be a bounded domain with smooth boundary. Let $g:\R^+\to\R^+$ be a continuous on $(0,+\infty)$
non-increasing and satisfying $$c_1=\liminf_{t\to 0^+}g(t)t^{\delta}\leq\underset{t\to 0^+}{\limsup} g(t)t^{\delta}=c_2,$$
for some $c_1,c_2>0$ and $0<\delta<1.$ Let $f(x,s) = h(x,s)e^{bs^{\frac{N}{N-1}}},$ $b>0$ is a constant.
Consider the singular functional
$I: W^{1,N}(\Omega)\to \R$ defined as
\begin{eqnarray*}
&&I(u)
\eqdef\frac{1}{N}\|u\|^N_{W^{1,N}(\Omega)}-\int_{\Omega}G(u^+)\,{\rm d} x
-\int_{\Omega}F(x,u^+) \,{\rm d} x\nonumber\\
&& -\frac{1}{q+1}||u||^{q+1}_{L^{q+1}(\partial\Omega)}
\nonumber
\end{eqnarray*}
where $F(x,u)=
\int_0^sf(x,s)\,{\rm d}s$, $G(u)=\int_0^s g(s)\,{\rm d}s$. We show that if
$u_0\in C^1(\overline{\Omega})$ satisfying $u_0\geq \eta \mbox{dist}(x,\partial\Omega)$,
for some $0<\eta$, is a local minimum of $I$ in the $C^1(\overline{\Omega})\cap C_0(\overline{\Omega})$
topology, then it is also a local minimum in $W^{1,N}(\Omega)$ topology. This result is useful
%for proving multiple solutions to the associated Euler-lagrange equation ${\rm (P)}$ defined below.
to prove the multiplicity of positive solutions to critical growth problems with co-normal
boundary conditions.
Téléchargements
Copyright (c) 2017 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).