Some results on the projective cone normed tensor product spaces over banach algebras
Résumé
For two real Banach algebras $\mathbb{A}_1$ and $\mathbb{A}_2$, let $K_p$ be the projective cone in $\mathbb{A}_1\otimes_\gamma \mathbb{A}_2$. Using this we define a cone norm on the algebraic tensor product of two vector spaces over the Banach algebra $\mathbb{A}_1\otimes_\gamma \mathbb{A}_2$ and discuss some properties. We derive some fixed point theorems in this projective cone normed tensor product space over Banach algebra with a suitable example. For two self mappings $S$ and $T$ on a cone Banach space over Banach algebra, the stability of the iteration scheme $x_{2n+1}=Sx_{2n}$, $x_{2n+2}=Tx_{2n+1},\;n=0,1,2,...$ converging to the common fixed point of $S$ and $T$ is also discussed here.Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
- Cover Letter (English)
- Some Results on the Projective Cone Normed Tensor Product Spaces Over Banach Algebras (English)
- Some Results on the Projective Cone Normed Tensor Product Spaces Over Banach Algebras (English)
- Some Results on the Projective Cone Normed Tensor Product Spaces Over Banach Algebras (English)
Publiée
2018-02-19
Numéro
Rubrique
Research Articles
Copyright (c) 2018 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



