On Bäcklund and Ribaucour transformations for hyperbolic linear Weingarten surfaces

  • Claudiano Goulart Universidade Estadual de Feira de Santana - UEFS Departamento de Ciências Exatas

Résumé

We consider Bäcklund transformations for hyperbolic linear Weingarten surfaces in Euclidean 3-space. The composition of these transformations is obtained in the Permutability Theorem that generates a 4-parameter family of surfaces of the same type. Since a Ribaucour transformation of a hyperbolic linear Weingarten surface also gives a 4-parameter family of such surfaces, one has the following natural question. Are these two methods equivalent, as it occurs with surfaces of constant positive Gaussian curvature or constant mean curvature? By obtaining necessary and sucient conditions for the surfaces given by the two procedures to be congruent.The analytic interpretation of the geometric results is given in terms of solutions of the sine-Gordon equation.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Claudiano Goulart, Universidade Estadual de Feira de Santana - UEFS Departamento de Ciências Exatas

Departamento de Ciências Exatas

Professor Adjunto B

Publiée
2018-02-19
Rubrique
Articles