Stability analysis of linear conformable fractional differential equations system with time delays

  • Vahid Mohammadnezhad University of Mazandaran Faculty of Mathematical Sciences Department of Mathematics
  • Mostafa Eslami University of Mazandaran Faculty of Mathematical Sciences Department of Mathematics
  • Hadi Rezazadeh Amol University of Special Modern Technologies Faculty of Engineering Technology

Résumé

In this paper, we first study stability analysis of linear conformable fractional differential equations system with time delays. Some sufficient conditions on the asymptotic stability for these systems are proposed by using properties of the fractional Laplace transform and fractional version of final value theorem. Then, we employ conformable Euler’s method to solve conformable fractional differential equations system with time delays to illustrate the effectiveness of our theoretical results

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

Podlubny, I. (1998). Fractional Differential Equations. New York: Academic Press.

Ross, B. (Ed.). (2006). Fractional calculus and its applications: proceedings of the international conference held at the University of New Haven, June 1974 (Vol. 457). Springer.

Petras, I. (2012). Fractional Calculus and its Applications. Mathematical Modeling with Multidisciplinary Applications, 355-396.

Hilfer, R. ed. (2000). Applications of fractional calculus in physics. (Vol. 128). Singapore: World Scientific.

He, J. H. (2014). A tutorial review on fractal spacetime and fractional calculus. International Journal of Theoretical Physics, 53(11), 3698-3718.

Khalil, R., Al Horani, M., Yousef, A. and Sababheh, M. (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, 65-70.

Matignon, D. (1996). Stability results for fractional differential equations with applications to control processing. In Computational engineering in systems applications,2, 963-968.

Qian, D., Li, C., Agarwal, R. P., & Wong, P. J. (2010). Stability analysis of fractional differential system with Riemann–Liouville derivative. Mathematical and Computer Modelling, 52(5), 862-874.

Zhang, F., Li, C. (2011). Stability analysis of fractional differential systems with order lying in (1, 2).Advances in Difference Equations, 2011(1), 213485.

Qin, Z., Wu, R. and Lu, Y. (2014). Stability analysis of fractional-order systems with the Riemann-Liouville derivative. Systems Science & Control Engineering: An Open Access Journal, 2(1), 727-731.

Aminikhah, H., Refahi Sheikhani, A., & Rezazadeh, H. (2013). Stability analysis of distributed order fractional chen system. The Scientific World Journal, 2013.

Aminikhah, H., Sheikhani, A. R., & Rezazadeh, H. (2015). Stability analysis of linear distributed order system with multiple time delays. Univ. Politeh.Buchar. Sci. Bull. Ser.A Appl. Math. Phys, 77(2), 207-218.

Deng, W., Li, C., & Lu, J. (2007). Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dynamics, 48(4), 409-416.

Rezazadeh, H., Aminikhah, H., & Refahi Sheikhani, A. (2016). Stability analysis of Hilfer fractional differential systems. Mathematical Communications, 21(1), 45-64.

Rezazadeh, H., Aminikhah, H., & Sheikhani, A. H. R. (2016). Analytical studies for linear periodic systems of fractional order. Mathematical Sciences, 10(1-2), 13-21.

Abdeljawad, T. (2015). On conformable fractional calculus, Journal of Computational and Applied Mathematics, 279, 57-66.

Zhao, D., & Luo, M. (2017). General conformable fractional derivative and its physical interpretation.Calcolo, 1-15.

Chung, W. S. (2015). Fractional Newton mechanics with conformable fractional derivative. Journal of Computational and Applied Mathematics, 290, 150-158.

Eslami, M. (2016). Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations. Applied Mathematics and Computation, 285, 141-148.

Ekici, M., Mirzazadeh, M., Eslami, M., Zhou, Q., Moshokoa, S. P., Biswas, A., &B elic, M. (2016). Optical soliton perturbation with fractional-temporal evolution by first integral method with conformable fractional derivatives.Optik-International Journal for Light and Electron Optics, 127(22), 10659-10669.

Aminikhah, H., Sheikhani, A. R., & Rezazadeh, H. (2016). Sub-equation method for the fractional regularized long-wave equations with conformable fractional derivatives. Scientia Iranica. Transaction B, Mechanical Engineering, 23(3), 1048.

Khodadad, F. S., Nazari, F., Eslami, M., & Rezazadeh, H. (2017). Soliton solutions of the conformable fractional Zakharov-Kuznetsov equation with dual-power law nonlinearity. Optical and Quantum Electronics, 49(11), 384.

Eslami, M., & Rezazadeh, H. (2016). The first integral method for Wu-Zhang system with conformable time-fractional derivative.Calcolo, 53(3), 475-485.

Unal, E., Gokdogan, A., & Celik, E. (2017). Solutions around a regular a singular point of a sequential conformable fractional differential equation. Kuwait Journal of Science, 44.

Eslami, M., Khodadad, F. S., Nazari, F., & Rezazadeh, H. (2017). The first integral method applied to the Bogoyavlenskii equations by means of conformable fractional derivative. Optical and Quantum Electronics, 49(12), 391.

Unal, E., & Gokdogan, A. (2017). Solution of conformable fractional ordinary differential equations via differential transform method. Optik-International Journal for Light and Electron Optics, 128, 264-273.

Rezazadeh, H., Aminikhah, H., & Refahi Sheikhani, A. H. (2017). Stability analysis of conformable fractional systems. Iranian Journal of Numerical Analysis and Optimization, 7(1), 13-32.

Kurt,A., C¸ enesiz, Y.,& Tasbozan, O. (2015). On the Solution of Burgers’ Equation with the New Fractional Derivative.Open Phyisic, 13, 355-360.

Hesameddini, E., Asadollahifard, E. (2015). Numerical solution of multi-order fractional di erential equations via the sinc collocation method.Iranian Journal of Numerical Analysis and Optimization, 5, 37-48.

Publiée
2019-05-25
Rubrique
Articles