Reidemeister classes for coincidences between sections of a fiber bundle
Résumé
Let $s_0,f_0$ be two sections of a fiber bundle $q: E\to B$ and the coincidence set $\Gamma(s_0,f_0)\neq \emptyset$. We consider the following question: Is there $s_0\simeq_B s_1$ (by the homotopies which cover the constant homotopy $\overline{I}_B$ on the basic space) such that $\Gamma(s_1, f_0)=\emptyset$? If $b_0\in \Gamma(s_0,f_0)$ and $F_0=q^{-1}(b_0)$ is the typical fiber, in this context we can use the homotopy lifting extension propriety of the fibration $q$ to obtain homotopies over $B$. When we make this and the basic point are fixed we can use the elements $s_0(\beta), f_0(\beta^{-1})$ where $\beta \in\pi_1(B,b_0)$ and the elements $\gamma\in \pi_1(F_0,e_0)$. So we will introduce the algebraic classes of Reidemeister relative to the subgroup $\pi_1(F_0,e_0)$. When the basic points are not fixed we need to consider the classes $[\til{s}]_L$ of lifting of $s_0$ defined on the universal covering $\til{B}$ to $\til{E}$. The present work relates the lifting classes $[\til{s}]_L$ of $s_0$ and the algebraic relative Reidemeister classes $R_A(s_0,f_0; \pi_1(F_0,e_0).$Téléchargements
Références
Dold, A., Lectures on Algebraic Topology. Heidelberg: Springer-Verlag, 1980.
Jezierski, J., The Nielsen Number Product Formula for Coincidences. Fundamenta Mathematicae, 134 (1990), No.
, pp. 183-212. 3. Jezierski, J., The Relative Coincidence Nielsen Number. Fundamenta Mathematicae, 149 (1996), No. 1, pp. 01-18.
Jiang, B., Lectures on Nielsen Fixed Point Theory. Contemp. Math., vol. 14: American Mathematical Soc., 1983.
Lee, S. H., & Baek, S., Remarks on the Reidemeister Number for Coincidences. Comm. Korean Math. Soc. 13 (1998), No. 1, pp. 109-121.
Rotman, J. J., An Introduction to Algebraic Topology. New York: Spring-Verlag, 1988.
Staecker, C. P., Nielsen Equalizer Theory. Topology and its Applications, 158 (2011), No. 13, pp. 1615-1625.
Copyright (c) 2019 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).