On representation dimension of tame cluster tilted algebras
Abstract
The aim of this work is to study the representation dimension of cluster tilted algebras. We prove that the weak representation dimension of tame cluster tilted algebras is equal to three. We construct a generator module that reaches the weak representation dimension, unfortunately this module is not always a cogenerator. We show for which algebras this module gives the representation dimension.
Downloads
References
Assem, I., Brustle, T., Schiffler, R., Cluster-tilted algebras and slices. Journal of Algebra 319, no. 8, 3464-3479, (2008).
Assem, I., Kerner, O., Constructing torsion pairs. Journal of Algebra 185, 19-41, (1996).
Assem, I., Platzeck, M., Trepode, S., On the representation dimension of tilted and laura algebras. Journal of Algebra 296, 426-439, (2006).
Auslander, M., Representation dimension of artin algebras. Queen Mary College Mathematics Notes, London, (1971).
Buan, A., Marsh, R., Reineke, M., Reiten, I., Todorov, G., Tilting theory and cluster combinatorics. Advances in Mathematics 204, Issue. 2, 572-618, (2006).
Buan, A., Marsh, R., Reiten, I., Cluster-tilted algebras. Transactions of the American Mathematical Society 359, Issue 1, 323-332, (2007).
F. Coelho, M. Platzeck, On the representation dimension of some classes of algebras, Journal of Algebra 275, 615-628, (2004).
Erdmann, K., Holm, T., Iyama, O., Schroer, J., Radical embeddings and representation dimension. Advances in mathematics 185, Issue. 1, 159-177, (2004).
Fomin, S., Zelevinsky, A., Cluster Algebras I: Foundations. Journal of the American Mathematical Society 15, Issue. 2, 497-529, (2002).
Garc´ıa Elsener, A., Schiffler, R., On syzygies over 2-Calabi-Yau tilted algebras. Journal of Algebra 470, 91–121, (2017).
Gonz´alez Chaio, A. Trepode, S., Representation dimension of cluster concealed algebras. Algebras and Representation Theory 16, Issue 4, 1001-1015, (2013)
Happel, D., Reiten, I.,Smalø, S., Tilting in abelian categories and quasi-tilted algebras. Memoirs of the American Mathematical Society 120, (1996).
Happel, D. Ringel, C., Tilted algebras. Transactions of the American Mathematical Society, vol. 274, Issue. 2, 399-443, (1982).
Iyama, O., Finiteness of representation dimension. Proceedings of the american mathematical society 131, Issue. 4, 1011-1014, (2003).
Ringel, C., Tame Algebras and Integral Quadratic Forms. Lecture Notes in Mathatematics 1099, (1984).
Ringel, C., The regular components of the Auslander-Reiten quiver of a tilted algebra. Chinese Annals of Mathematics, vol. 9 Issue. 1, 1-18, (1988).
Rouquier, R., On the representation dimension of exterior algebras. Inventiones mathematicae 165, 357-367, (2006).
Skowronski, A, Simpson, D., Elements of the Representation Theory of Associative Algebras 2: Tubes and Concealed Algebras of Euclidean Type. London Mathematical Society Student Texts 71, Cambridge University Press, (2007).
Skowronski, A, Simpson, D., Elements of the Representation Theory of Associative Algebras 3: Representation-Infinite Tilted Algebras. London Mathematical Society Student Texts 72, Cambridge University Press, (2007).
Copyright (c) 2020 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).