Spectral Mapping Theorem for C0-Semigroups of Drazin spectrum
Résumé
Let $(T(t))_{t\geq 0}$ be a $C_0$ semigroup of bounded linear operators on a Banach space $X$ and denote its generator by $A$. A fundamental problem to decide whether the Drazin spectrum of each operator $T(t)$ can be obtained from the Drazin spectrum of $A$. In particular, one hopes that the Drazin Spectral Mapping Theorem holds, i.e., $e^{t \sigma_{D}(A)}=\sigma_{D}(T(t))\backslash \{0\}$ for all $t \geq 0$.
Téléchargements
Copyright (c) 2019 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).