$L_r$-biharmonic hypersurfaces in $\mathbb{E}^4$
Résumé
A hypersurface $x : M^n\rightarrow\mathbb{E}^{n+1}$ is said to be biharmonic if $\Delta^2x=0$, where $\Delta$ is the Laplace operator of $M^n$. Based on a well-known conjecture of Bang-Yen Chen, the only biharmonic hypersurfaces in $E^{n+1}$ are the minimal ones. In this paper, we study an extension of biharmonic hypersurfaces in 4-dimentional Euclidean space $\mathbb{E}^4$. A hypersurface $x : M^n\rightarrow\mathbb{E}^{n+1}$ is called $L_r$-biharmonic if $L_r^2x=0$, where $L_r$ is the linearized opereator of $(r + 1)$th mean curvature of $M^n$. Since $L_0=\Delta$, the subject of $L_r$-biharmonic hypersurface is an extension of biharmonic ones. We prove that any $L_2$-biharmonic hypersurface in $\mathbb{E}^4$ with constant $2$-th mean curvature is $2$-minimal. We also prove that any $L_1$-biharmonic hypersurfaces in $\mathbb{E}^4$ with constant mean curvature is $1$-minimal.
Téléchargements
Copyright (c) 2019 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



