Ornstein-Uhlenbeck Semigroup on the dual space of Gelfand-Shilov Spaces of Beurling type
Abstract
We use a previously obtained topological characterization of Gelfand-Shilov spaces of Beurling type to characterize its dual using Riesz representation theorem. Using the characterization of the dual space equipped with the weak topology, we study the action of Ornstein-Uhlenbeck Semigroup on the dual space.
Downloads
References
J. Chung, S. Y. Chung, D. Kim, Characterizations of the Gelfand-Shilov spaces via Fourier Transform, Proc. Amer. Math. Soc. 124 (1996), 2101-2108.
D. Gabor, Theory of communication, J. IEE (London), 93 (III): 429-457, November 1946.
H. Komatsu, Ultradistributions. I: Structure theorems and a characterization, J. Fac. Sei. Univ. Tokyo Sect. IA Math. 20 (1973), 25-105.
I. M. Gelfand and G. E. Shilov, Generalized functions, Vol. II, Academic Press. New York, 1964.
W. Rudin, Functional Analysis, Second Edition, McGraw-Hill Inc., 1991.
S. Pilipovic, Tempered ultradistributions, Boll. U.M.I. 7 (1988), 235-251.
S. Pilipovic, Characterization of bounded sets in spaces of ultradistributions, Proc. Amer. Math. Soc. 120 (1994), 1191-1206.
A. Kaminski, D. Perisic, S. Pilipovic, On the Convolution in the Gelfand-Shilov spaces, Integral Transforms and Special Functions, 4:1-2 (2007), 83-96, DOI: 10.1080/10652469608819096.
L. Schwartz, Une characterization de l’space S de Schwartz, C. R. Acad. Sci. Paris Ser. I 316 (1993) 23-25.
Copyright (c) 2020 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).