Certain results on Lorentzian para-Kenmotsu manifolds
Abstract
The object of the present paper is to study Lorentzian para-Kenmotsu manifolds with respect to the quarter-symmetric metric connection. First we study Lorentzian para-Kenmotsu manifolds with respect to the quarter-symmetric metric connection satisfying the conditions $\bar R\cdot \bar S=0$ and $\bar S\cdot \bar R=0$. After that we study $\phi$-conformally flat, $\phi$-conharmonically flat, $\phi$-concircularly flat, $\phi$-projectively flat and conformally flat Lorentzian para-Kenmotsu manifolds with respect to the quarter-symmetric metric connection and it is shown that in each of these case the manifold is generalized $\eta$-Einstein manifold.
Downloads
References
Ahmad, M., Jun, J. B. and Haseeb, A., Hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter-symmetric metric connection, Bull. Korean Math. Soc. 46, 477-487, (2009).
Alegre, P., Slant submanifolds of Lorentzian Sasakian and Para Sasakian manifolds, Taiwanese J. Math. 17, 897-910, (2013).
Barman, A., Weakly symmetric and weakly Ricci-symmetric LP-Sasakian manifolds admitting a quarter-symmetric metric connection, Novi Sad J. Math. 45, 143-153, (2015).
Blair, D. E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Springer-Verlag, 509, (1976).
De, U. C., Mandal, D. and Mandal, K., Some characterizations of Kenmotsu manifolds admitting a quarter-symmetric metric connection, Bull. Trans. Univ. Brasov 9 (58) no.1, Series III: Math., Inf., Phy., 39-52, (2016).
De, U. C. and Sengupta, J., Quarter-symmetric metric connection on a Sasakian manifold, Commun. Fac. Sci. Univ. Ank. Series A1 49, 7-13, (2000).
Friedmann, A. and Schouten, J. A., Uber die Geometrie der halbsymmetrischen Ubertragung, Math. Z. 21, 211-223, (1924).
Golab, S., On semi-symmetric and quarter-symmetric linear connections, Tensor (N. S.) 29, 249-254, (1975).
Haseeb, A., Some new results on para-Sasakian manifolds with a quarter-symmetric metric connection, Facta Universitatis (NI˘S), Ser. Math. Inform. 30, 765-776, (2015).
Hui, S. K., On -pseudo symmetric Kenmotsu manifolds with respect to quarter-symmetric metric connection, Applied Sciences 15, 71-84, (2013).
Mandal, K. and De, U. C., Quarter-symmetric metric connection in a P-Sasakian manifold, Analele Univ. de Vest, Timisoara Seria Matematica-Informatica 53, 137-150, (2015).
Mondal, A. K. and De, U. C., Some properties of a quarter-symmetric metric connection on a Sasakian manifold, Bull. Math. Analysis Appl. 3, 99-108. (2009).
Ozgur, C., -conformally flat Lorentzian para-Sasakian manifolds, Radovi Matematicki 12, 99-106, (2003).
Prakash, A., -conformally flat (LCS)n-manifolds, Global Journal of Advanced Research on Classical and Modern Geometries 4, 136-143, (2015).
Prasad, R. and Haseeb, A., On a Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection, Novi Sad J. Math. 46, 103-116, (2016).
Yano K. and Kon, M., Structures on Manifolds, Series in Pure Math., World Scientific, Vol. 3, (1984).
Copyright (c) 2020 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).