Certain results on Lorentzian para-Kenmotsu manifolds

  • Abdul Haseeb Jazan University
  • Rajendra Prasad University of Lucknow

Abstract

The object of the present paper is to study Lorentzian para-Kenmotsu manifolds with respect to the quarter-symmetric metric connection. First we study Lorentzian para-Kenmotsu manifolds with respect to the quarter-symmetric metric connection satisfying the conditions $\bar R\cdot \bar S=0$ and $\bar S\cdot \bar R=0$. After that we study $\phi$-conformally flat, $\phi$-conharmonically flat, $\phi$-concircularly flat, $\phi$-projectively flat and conformally flat Lorentzian para-Kenmotsu manifolds with respect to the quarter-symmetric metric connection and it is shown that in each of these case the manifold is generalized $\eta$-Einstein manifold.

Downloads

Download data is not yet available.

References

Ahmad, M., Jun, J. B. and Haseeb, A., Hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter-symmetric metric connection, Bull. Korean Math. Soc. 46, 477-487, (2009).

Alegre, P., Slant submanifolds of Lorentzian Sasakian and Para Sasakian manifolds, Taiwanese J. Math. 17, 897-910, (2013).

Barman, A., Weakly symmetric and weakly Ricci-symmetric LP-Sasakian manifolds admitting a quarter-symmetric metric connection, Novi Sad J. Math. 45, 143-153, (2015).

Blair, D. E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Springer-Verlag, 509, (1976).

De, U. C., Mandal, D. and Mandal, K., Some characterizations of Kenmotsu manifolds admitting a quarter-symmetric metric connection, Bull. Trans. Univ. Brasov 9 (58) no.1, Series III: Math., Inf., Phy., 39-52, (2016).

De, U. C. and Sengupta, J., Quarter-symmetric metric connection on a Sasakian manifold, Commun. Fac. Sci. Univ. Ank. Series A1 49, 7-13, (2000).

Friedmann, A. and Schouten, J. A., Uber die Geometrie der halbsymmetrischen Ubertragung, Math. Z. 21, 211-223, (1924).

Golab, S., On semi-symmetric and quarter-symmetric linear connections, Tensor (N. S.) 29, 249-254, (1975).

Haseeb, A., Some new results on para-Sasakian manifolds with a quarter-symmetric metric connection, Facta Universitatis (NI˘S), Ser. Math. Inform. 30, 765-776, (2015).

Hui, S. K., On -pseudo symmetric Kenmotsu manifolds with respect to quarter-symmetric metric connection, Applied Sciences 15, 71-84, (2013).

Mandal, K. and De, U. C., Quarter-symmetric metric connection in a P-Sasakian manifold, Analele Univ. de Vest, Timisoara Seria Matematica-Informatica 53, 137-150, (2015).

Mondal, A. K. and De, U. C., Some properties of a quarter-symmetric metric connection on a Sasakian manifold, Bull. Math. Analysis Appl. 3, 99-108. (2009).

Ozgur, C., -conformally flat Lorentzian para-Sasakian manifolds, Radovi Matematicki 12, 99-106, (2003).

Prakash, A., -conformally flat (LCS)n-manifolds, Global Journal of Advanced Research on Classical and Modern Geometries 4, 136-143, (2015).

Prasad, R. and Haseeb, A., On a Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection, Novi Sad J. Math. 46, 103-116, (2016).

Yano K. and Kon, M., Structures on Manifolds, Series in Pure Math., World Scientific, Vol. 3, (1984).

Published
2020-10-09
Section
Articles