Efficient procedure to generate generalized Gaussian noise using linear spline tools
Résumé
In this paper, we propose a simple method to generate generalized Gaussian noises using the inverse transform of cumulative distribution. This inverse is expressible by means of the inverse incomplete Gamma function. Since the implementation of Newton's method is rather simple, for approximating inverse incomplete Gamma function, we propose a better and new initial value exploiting the close relationship between the incomplete Gamma function and its piecewise linear interpolant. The numerical results highlight that the proposed method simulates well the univariate and bivariate generalized Gaussian noises.
Téléchargements
Références
B. C. Arnold, E. Castillo, J. M. Sarabia, Multivariate distributions defined in terms of contours, Journal of Statistical Planning and Inference 138 (12), 4158-4171, 2008.
D. H. Bailey, J. M. Borwein, Crandall’s computation of the incomplete Gamma function and the Hurwitz zeta function, with applications to Dirichlet L-series, Applied Mathematics and Computation, Vol 268, 462-477, 2015.
F. Chapeau-Blondeau, A. Monir, Numerical Evaluation of the Lambert W Function and Application to Generation of Generalized Gaussian noise with exponent 1/2, IEEE Transactions on Signal Processing, vol. 50, 2160-2165, 2002.
D. Cho, T. D. Bui, Multivariate statistical modeling for image denoising using wavelet transforms, Signal Processing: Image Communication, 20 (1), 77-89, 2005.
R. A. DeVore, G. G. Lorentz, Constructive approximation. Springer-Verlag, Berlin, 1993.
L. Devroye, Random variate generation for multivariate unimodal densities, ACM Transactions on Modeling and Computer Simulation, 7, 447-477, 1997.
A. R. DiDonato, A. H. Morris, Computation of the incomplete gamma function ratios and their inverse, ACM Trans. Math. Software, vol. 12 (4), 377-393, 1986.
M. Dohler, M. Arndt, Inverse incomplete gamma function and its application, Electronics Letters, vol. 42 No.1, pp. 6-35, 2006.
K. T. Fang, S. Kotz, and K. W. Ng, Symmetric Multivariate and Related Distributions, London: Chapman & Hall, 1987.
K. T. Fang, S. Kotz, and K. W. Ng, Symmetric Multivariate and Related Distributions, Monographs on Statistics and Applied Probability, 36, Chapman & Hall, New York, 1990.
A. Gil, J. Segura, and N. M. Temme, Numerical methods for special functions. SIAM, Philadelphia, PA, 2007.
A. Gil, J. Segura, N. M. Temme, Efficient and Accurate Algorithms for the Computation and Inversion of the Incomplete Gamma Function Ratios, SIAM J. Scientific Computing, vol. 34 (6), A2965-A2981, 2012.
E. Gomez, M. A. Gomez-Villegas and J. M. Marın Gomez, A multivariate generalization of the power exponential family of distributions, Commun. Statist.-Theory and methods, 27 (3), 589-600, 1998.
M. E. Johnson, Multivariate Statistical Simulation. Wiles Series in Probability and Mathematical Statistics, New York, 1987.
H. Kaneko, Y. Xu, Gauss-Type Quadratures for Weakly Singular Integrals and their Application to Fredholm Integral Equations of the Second Kind, Mathematics of Computation, vol. 62, no. 206, 739-753, 1994.
D. Kelker, Distribution Theory of Spherical Distributions and Location-Scale Parameter Generalization, Sankhya: The Indian Journal of Statistics, 32 (4), 419-430, 1970.
T. Luu, Efficient and accurate parallel inversion of the Gamma distribution, SIAM J. Sci. Comput., 37 (1), C122-C141, 2015.
A. Monir, Contribution a la modelisation et a la synthese des signaux aleatoires: signaux non gaussiens, signaux a correlation non exponentielle, these de doctorat, Universit´e d’Angers France, Novembre 2003.
A. Monir, H. Mraoui, Spline approximations of the Lambert W function and application to simulate generalized Gaussian noise with exponent = 1/2, Digital Signal Processing, vol. 33, 34-41, 2014.
R. B. Paris, Incomplete gamma and related functions, NIST handbook of mathematical functions, U.S. Dept. Commerce, Washington, DC, 175-192, 2010.
F. Pascal, L. Bombrun, J. Y. Tourneret, and Y. Berthoumieu, Parameter estimation for multivariate generalized gaussian distributions, IEEE Transactions on Signal Processing, 61 (23), 5960-5971, 2013.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, third ed., Cambridge Univ. Press, Cambridge, 2007.
N. Solaro, Random variate generation from Multivariate Exponential Power distribution, Statistica & Applicazioni, vol. II, no. 2, 2004.
E. A. Valdez, A. Chernih, Wang’s capital allocation formula for elliptically contoured distributions, Insurance: Mathematics and Economics, 33, 517-532, 2003. A Course of Modern Analysis, Cambridge University Press, Cambridge (1902); Fourth Edition (1965).
E. T. Whittaker, G. N. Watson, A Course Modern Analysis, Cambridge University Press, Cambridge (1902), Fourth Edition 1965.
Copyright (c) 2020 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).