Fixed point theorems for generalized (beta-phi)-contractive pair of mappings using simulation functions
Resumen
In this paper, our aim is to present a new class of generalized (beta-phi)-Z- contractive pair of mappings and we prove certain xed point theorems for a pair of mappings using this concept. Our results generalizes some xed point theorems in the literature. As an application some xed point theorems endowed with a partial order in metric spaces are also proved.
Descargas
Citas
Banach, S.: Surles operations dans les ensembles abstraits et leur applications aux equations itegrates, Fundamenta Mathematics 3, 133-181 (1922).
Bhaskar, T. G., Lakshmikantham, V.: Fixed Point Theory in partially ordered metric spaces and applications, Nonlinear Analysis 65, 1379-1393 (2006).
Branciari, A.: A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 29, 531-536 (2002).
Caccioppoli, R.: Un teorema generale sullesistenza di elementi uniti in una transformazione funzionale, Rendicontilincei: Mathematica E Applicazioni. 11, 794-799 (1930). (in Italian).
Ciric, L., Cakic, N., Rajovic, M., Ume, J. S.: Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2008 (2008), Article ID 131294, 11 pages.
Kannan, R.: Some results on fixed points, Bull. Calcutta. Math. Soc. 10, 71-76 (1968).
Karapinar, E., Samet, B.: Generalized α − ψ− contractive type mappings and related fixed point theorems with applications, Abstract and Applied Analysis 2012 Article ID 793486, 17 pages doi: 10.1155/2012/793486.
Lakshmikantham, V., Ciric, L.: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis 70, 4341-4349 (2009).
Nieto, J. J., Lopez, R. R.: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22, 223-239 (2005).
Saadati, R., Vaezpour, S. M.: Monotone generalized weak contractions in partially ordered metric spaces, Fixed Point Theory 11, 375-382 (2010).
Samet, B., Vetro, P.: Fixed point theorem for α − ψ− contractive type mappings, Nonlinear Anal. 75, 2154-2165(2012).
Shahi, P., Kaur, J., Bhatia, S. S.: Coincidence and common fixed point results for generalized α−ψ−contractive type mappings with applications, arXiv:1306.3498v1 [math.FA] 14 jun 2013.
Khojasteh F., Shukla S., Radenovic S.: A new approach to the study of ?xed point theory for simulation functions, Filomat. 29, 1189-1194.1 (2015).
Argoubi H., Samet B., Vetro C.: Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl. 8, 1082-1094.1, 1.8. 1.9(2015).
Derechos de autor 2020 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).