Extending the applicability of Newton's and Secant methods under regular smoothness
Résumé
The concept of regular smoothness has been shown to be an appropriate and powerfull tool for the convergence of iterative procedures converging to a locally unique solution of an operator equation in a Banach space setting. Motivated by earlier works, and optimization considerations, we present a tighter semi-local convergence analysis using our new idea of restricted convergence domains. Numerical examples complete this study.
Téléchargements
Références
Amat, S., Busquier,S., Plaza, S., Chaotic dynamics of a third-order Newton-type method, J. Math. Anal. Appl. 366, 1, (2010), 24-32.
Argyros I. K., A unifying local–semilocal convergence analysis and applications for two–point Newton–like methods in Banach space, J. Math. Anal. and Appl., 298 (2004), 374–397.
Argyros I. K., Convergence and applications of Newton–type iterations, Springer, New York, 2008.
Argyros, I. K., Hilout, S., Weaker conditions for the convergence of Newton’s method, Journal of Complexity, 28, 3, (2012), 364-387.
Cianciaruso, F., A further journey in the ”Terra Incognitta” of the Newton–Kantorovich method, Nonlinear Funct. Anal. Appl., 15, (2010) n0.2, 173-183.
Galperin, A., Secant method with regularly continuous divided differences, J. Comput. Appl. Math., 193 (2006), no. 2, 574–595.
Galperin, A., Waksman, Z., Regular smoothness and Newton’s method, Numer. Funct. Anal. Optim., 15 (1994), 813–858.
Hernanadez, M. A., Rubio, M. J., Ezquerro, J. A., Secant–like methods for solving integral equations of the Hammerstein type, J. Comput. Appl. Math., 115 (2001), 245–254.
Kantorovich, L. V., Akilov, G. P., Functional Analysis, Pergamon Press, Oxford, 1982.
Kornstaedt, H. J., Funktionallongleichungen und iterations verfahren, Aequationes Math., 13 (1975), 21–45.
Magren˜an, A. A., Different anomalies in a Jarratt family of iterative root-finding methods, Appl.Math.Comput.233, (2014), 29-38.
Magrenan, A. A., A new tool to study real dynamics: The convergence plane, Appl. Math. Comput. 248, (2014), 215-224.
Potra, F. A., An application of the induction method of V. Ptak to the study of regula falsi, Aplikace Matematiky, 26 (1981), 111–120.
Potra, F. A., An error analysis for the secant method, Numer. Math., 38 (1981/82), 427–445.
Schmidt, J. W., Uberlinear konvergente Mehrschrittverfahren vom Regula falsi– und Newton–Typ, (German), Z. Angew. Math. Mech., 53 (1973), 103–114.
Schmidt, J. W., Eine Ubertragung der Regula Falsi auf Gleichungen in Banachrau men, I, Nichtlineare Gleichungssysteme, (German), Z. Angew. Math. Mech., 43 (1963), 1–8.
Schmidt, J. W., Eine Ubertragung der Regula Falsi auf Gleichungen in Banachrau men, II, Nichtlineare Gleichungssysteme, (German), Z. Angew. Math. Mech., 43 (1963), 97–110.
Sergeev, A. S., The method of chords, (Russian), Sibirsk. Mat. Z., 2 (1961), 282–289.
Copyright (c) 2020 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).