On smallest (generalized) ideals and semilattices of (2,2)-regular non-associative ordered semigroups
Résumé
An ordered AG-groupoid can be referred to as a non-associative ordered semigroup, as the main di¤erence between an ordered semigroup and an ordered AG-groupoid is the switching of an associative law. In this paper, we dene the smallest left (right) ideals in an ordered AG-groupoid and use them to characterize a (2; 2)-regular class of a unitary ordered AG-groupoid along with its semilattices and (2 ;2 _q)-fuzzy left (right) ideals. We also give the concept of an ordered A*G**-groupoid and investigate its structural properties by using the generated ideals and (2 ;2 _q)-fuzzy left (right) ideals. These concepts will verify the existing characterizations and will help in achieving more generalized results in future works.
Téléchargements
Références
S. K Bhakat and P.Das, On the definition of a fuzzy subgroups, Fuzzy sets Syst., 51(1992), 235-241. DOI: https://doi.org/10.1016/0165-0114(92)90196-B
B. Davvaz, (∈,∈ ∨q)-fuzzy subnear-rings and ideals, Soft Computing, 10(2006), 206-211. DOI: https://doi.org/10.1007/s00500-005-0472-1
W. A. Dudek and R. S. Gigon, Congruences on completely inve rse AG**-groupoids, Quasigroups and related systems, 20 (2012), 203-209.
W. A. Dudek and R. S. Gigon, Completely inverse AG**-group oids. Semigroup Forum, 87 (2013), 201-229. DOI: https://doi.org/10.1007/s00233-013-9465-z
O. Kazanci and S. Yamak, Generalized fuzzy bi-ideals of semigroup, Soft Comput., 12(2008), 1119-1124. DOI: https://doi.org/10.1007/s00500-008-0280-5
M. A. Kazim and M. Naseeruddin, On almost semigroups, The A lig. Bull. Math., 2(1972), 1-7.
M. Khan, Some studies in AG*-groupoids, Ph. D Thesis, Quaid-i-Azam University, Pakistan, 2008.
V. Murali, Fuzzy points of equivalent fuzzy subsets, Inform. Sci., 158 (2004) 277−288. DOI: https://doi.org/10.1016/j.ins.2003.07.008
Q. Mushtaq and S. M. Yusuf, On LA-semigroups, The Alig. Bull. Math., 8(1978), 65-70.
Q. Mushtaq and S. M. Yusuf, On locally associative left al most semigroups, J. Nat. Sci. Math., 19(1979), 57-62.
V. Protic and N. Stevanovic, AG-test and some general properties of Abel-Grassmann’s groupoids, PU. M. A., 4, 6 (1995), 371-383.
P.M. Pu and Y.M. Liu, Fuzzy topology I, neighborhood structure of a fuzzy point and Moore Smith convergence, J. Math. Anal. Appl., 76 (1980) 571−599. DOI: https://doi.org/10.1016/0022-247X(80)90048-7
A. Rosenfeld, Fuzzy groups, J. Math. Anal, Appl., 35(1971), 512-517. DOI: https://doi.org/10.1016/0022-247X(71)90199-5
N. Stevanovic and P. V. Protic, Composition of Abel-Grassmann’s 3-bands, Novi Sad, J. Math., 2, 34 (2004), 175-182.
M. Shabir, Y. B. Junan Y. Nawaz, Characterizations of regular semigroups by (α, β)-fuzzy ideals, Computers and Mathematics with Applications, 59(2010), 161-175. DOI: https://doi.org/10.1016/j.camwa.2009.06.014
M. Shabir, Y. B. Junan Y. Nawaz, Semigroups charactarized by (∈,∈ ∨qk)-fuzzy ideals, Computer and Mathematics with applications, 60(2010), 1473-1493. DOI: https://doi.org/10.1016/j.camwa.2010.06.030
F. Yousafzai, A. Khan, V. Amjid and A. Zeb, On fuzzy fully regular ordered AG-groupoids, Journal of Intelligent & Fuzzy Systems, 26 (2014), 2973-2982.
F. Yousafzai, N. Yaqoob and A. Zeb, On generalized fuzzy ideals of ordered AG-groupoids, International Journal of Machine Learning and Cybernetics, 7 (2016), 995-104. DOI: https://doi.org/10.1007/s13042-014-0305-6
L. A.Zadeh, Fuzzy sets, Information and Control., 8(1965), 338-353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
Copyright (c) 2021 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).