Some remarks on multivalent functions of higher-order derivatives
Résumé
Two subclasses G_{p,q}(β) and J_{p,q}(α,β,f(z)) of p-valently starlike functions of higher-order derivatives are introduced. The object of the present paper is to derive some properties for the classes G_{p,q}(β) and J_{p,q}(α,β,f(z)). The results obtained generalize the related works of some authors and some other new results are obtained.
Téléchargements
Références
Aouf, M. K., A generalization of mulivalent functions with negative coefficients, J. Korean Math. soc. 25, no. 1, 53-66, (1988).
Aouf, M. K., Certain subclasses of p-valent functions defined by using a differential operator, Appl. Math. Comput. 206, 867-875, (2008). DOI: https://doi.org/10.1016/j.amc.2008.09.048
Aouf, M. K., Some families of p-valent functions with negative coefficients, Acta Math. Univ. Comenianae 78, no. 1, 121-135, (2009).
Aouf, M. K., Bounded p-valent Robertson functions defined by using a differential operator, J. Franklin Institute 347, 1972-141, (2010). DOI: https://doi.org/10.1016/j.jfranklin.2010.10.012
Fukui, S., A remark on a class of certain analytic functions, Proc. Japan Acad. Ser. A , 66, 191-192, (1990). DOI: https://doi.org/10.3792/pjaa.66.191
Jack, I. S., Functions starlike and convex of order α,, J. London Math. Soc. 2, no. 3, 469-474, (1971). DOI: https://doi.org/10.1112/jlms/s2-3.3.469
Miller, S. S., Differential inequalities and Caratheodory functions, Bull. Amer. Math. Soc. 81, 79-81, (1975). DOI: https://doi.org/10.1090/S0002-9904-1975-13643-3
Miller, S. S. and Mocanu, P. T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65, 289-305, (1978). DOI: https://doi.org/10.1016/0022-247X(78)90181-6
Nunokawa, M., On the theory of multivalent functions, Tsukuba J. Math. 11, no. 2, 273-286, (1987). DOI: https://doi.org/10.21099/tkbjm/1496160581
Nunokawa, M. and Hoshino, S., On criterion on a class of certain analytic functions, RIMS Kyoto Univ. Kokyuroku, 881, 20-22, (1994).
Nishimoto, K. and Owa, S., A remark on p-valently α−convex functions, J. College Engrg. Nihon Univ. Ser. B 30, 107-110, (1989).
Owa, S., On certain classes of p-valent functions with negative coefficients, Simon Stevin, 59, no. 4, 385-402, (1985).
Owa, S., Some properties of certain multivalently functions, Appl. Math. Lett., 4, no.5, 79-83, (1991). DOI: https://doi.org/10.1016/0893-9659(91)90151-K
Saitoh, H., Nunokawa, M., Owa, S., Sekine, T. and Fukui, S., A remark on multivalent functions, Bull. Soc. Royale. Sci. Liege 56, no.2, 137-141, (1987).
Copyright (c) 2021 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).