Boundary behaviour of holomorphic functions on the cardioid domain with some applications

Résumé

The objective of this research paper is to show how the Bennan'sconjecture  become a useful tool  to construct a holomorphic function on the cardioid domain, and on the boundary of unit disk. Moreover , we have addressed some applications on the existence of cusp on the boundary of arising from integrability of conformalmaps through one of the polar function in the general solution of Laplace equation.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Bibliographies de l'auteur

Shatha Sami Alhily, Mustansiriyah University

Department of Mathematics

_ Deepmala, PDPM Indian Institute of Information Technology

Design and Manufacturing

Références

L.V.Ahlfors, Conformal Invariants; topics in geometric function theory.McGraw-Hill, New York, 1973.

J.E.Brennan, The integrability of the derivative in conformal mapping, J. London Math. Soc. 2,261-272, 1978.

https://doi.org/10.1112/jlms/s2-18.2.261

L. DeCastro and D. Khavinson, Analytic Function in Smirnov Classes Ep with Real Boundary Values. 1-6, Received December 13, 2011. https://doi.org/10.1007/s11785-011-0174-x

Deepmala, A Study on Fixed Point Theorems for Nonlinear Contractions and its Applications.PhD thesis, Pt. Ravishankar Shukla University,Raipur 492 010, Chhatisgarh, India, 2014.

Deepmala and H. K. Pathak, A study on some problems on existence of solutions for nonlinear functional-integral equations.Acta Mathematica Scientia 33, 1305-1313, 2013. https://doi.org/10.1016/S0252-9602(13)60083-1

P.L. Duren, Theory of Hp Spaces, Academic Press, New York and London, 1970.

D. Khavinson, Remarks Concerning Boundary Properties of Analytic Functions of Epclasses. Indiana Univ. Math 31,779-787, 1982. https://doi.org/10.1512/iumj.1982.31.31054

A. Lohwater and G. Piranian andW. Rudin, The derivative of a schlicht function. Math. Scand 3,103-106, 1955.

https://doi.org/10.7146/math.scand.a-10430

A .I. Markushevich, Theory of functions of a complex variables.Vol3,Prentice-hall, INC, United States of America, 1967.

L.N. Mishra, On existence and behavior of solutions to some nonlinear integral equations with Applications. PhD thesis, National Institute of Technology, Silchar 788 010, Assam, India, 2017.

V.N. Mishra, Some Problems on Approximations of Functions in Banach Spaces.PhD thesis, Indian Institute of Technology, Roorkee 24, 667, Uttarakhand, India, 2007.

V.N. Mishra, L.N. Mishra, Trigonometric Approximation of Signals Functions in Lp (p =1)- norm. .International Journal of Contemporary Mathematical Sciences 7, 909-918, 2012.

Ch. Pommerenke, On the integral means of the derivative of a univalent function. J. London. Math. Soc 32, 254-258, 1985. https://doi.org/10.1112/jlms/s2-32.2.254

Ch. Pommerenke, Boundary Behaviour of Conformal Mappings.Springer, United States of America, 1992.

https://doi.org/10.1007/978-3-662-02770-7

M. Renardy and R. C. Rogers,An Introduction to Partial Differential Equations. Springer-Verlag ,New York, 1986.

Shatha. S. Alhily,Integrability under an Inner Boundary Complex Domain.International Journal of Advance Research 3,287-293, 2015.

Shatha. S. Alhily, Higher Integrability of the Gradient of Conforaml Maps., PhD thesis, Uk, 104-120, 2013.

Shatha. S. Alhily, Boundary Behaviour of Holomorphic Functions on the Cardioid Domain with some Applications. Oral presentation was done at the 2nd International Conference of Mathematical Sciences (ICMS) Maltepe University, Istanbul, Turkey, 2018 August.

Publiée
2019-10-14