Soft D-metric spaces
Résumé
The first aim to this paper is to define soft D− metric spaces and to give some fundamentel definitions. In addition to, we prove fixed point theorem of soft continuous mappings on soft D− metric spaces.
Téléchargements
Références
M.I. Ali, F.Feng, X. Liu, W.K. Min and M.Shabir, On some new operations in soft set theory. Comput. Math. Appl. 57 , 1547-1553, (2009). https://doi.org/10.1016/j.camwa.2008.11.009
S. Bayramov, C. Gunduz, Soft locally compact spaces and soft paracompact spaces. J. Math.System Sci. 3, 122-130, (2013)
S. Bayramov and C. Gunduz , A new approach to separability and compactness in soft topological spaces. TWMS Journal of Pure and Applied Mathematics 9(21),82-93, (2018).
S. Bayramov, C. Gunduz and L. Mdzinarishvili, Singular homology theory in the category of soft topological spaces. Georgian Math. J. 22 (4) , 457-467, (2015). https://doi.org/10.1515/gmj-2015-0042
Y.J. Cho and R. Saadati, A fixed point theorem in generalized D−metric spaces. Bull. Iranian Math. Soc. 32(2) 13-19, (2006).
S. Das and S.K.Samanta,Soft metric. Ann. Fuzzy Math. Inform. 6(1), 77-94, (2013).
B.C.Dhage, Generalized metric spaces and mappings with fixed point. Bull. Calcutta Math. Soc. 84, 329-336, (1992).
C. Gunduz Aras and S. Bayramov,On the Tietze extension theorem in soft topological spaces. Proc. of Inst.Math. and Mech. 43(1) , 105-115, (2017).
C. Gunduz Aras. S. Bayramov and V. Cafarli, Soft S−metric spaces, Communications in Mathematics and Applications 9(4), (2018).
C. Gunduz Aras. S. Bayramov and V. Cafarli, Fixed Point Theorems on Soft S− Metric Spaces, Communications in Mathematics and Applications 9(4), (2018).
S. Hussain and B. Ahmad, Some properties of soft topological spaces. Comput. Math. Appl. 62 , 4058-4067, (2011). https://doi.org/10.1016/j.camwa.2011.09.051
O. Kada, T.Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Japon. 44, 381-391, (1996).
P.K. Maji, R. Biswas and A.R. Roy, Soft set theory. Comput. Math. Appl. 45, 555-562, (2003).
https://doi.org/10.1016/S0898-1221(03)00016-6
W.K. Min, A note on soft topological spaces, Comput. Math. Appl. 62 , 3524-3528, (2011).
https://doi.org/10.1016/j.camwa.2011.08.068
D. Molodtsov,Soft set theory-first results. Comput. Math. Appl.37 , 19-31, (1999). https://doi.org/10.1016/S0898-1221(99)00056-5
S.V.R. Naidu, K.P.R. Rao and N.S. Rao, On the topology of D−metric spaces and generation of D−metric spaces from metric spaces. Int. J.Math. Sci. 51, 2719-2740, (2004) .
https://doi.org/10.1155/S0161171204311257
T.Y Ozturk and S. Bayramov, Soft mapping spaces. The Scientific World Journal, Article ID 307292 (2014), 8p.
https://doi.org/10.1155/2014/307292
M. Shabir and M. Naz, On soft topological spaces, Comput. Math. Appl. 61 , 1786-1799, (2011).
https://doi.org/10.1016/j.camwa.2011.02.006
M.I. Yazar, C. Gunduz Aras and S. Bayramov, Fixed point theorems of soft contractive mappings. Filomat, 30 (2) , 269-279, (2016). https://doi.org/10.2298/FIL1602269Y
M.I. Yazar, C. Gunduz Aras and S. Bayramov, Soft D-metric spaces. 2nd International Conference of Mathematical Sciences, 31 July 2018-6 August 2018 (ICMS 2018), Maltepe University, Istanbul, Turkey.
A.E. Coskun, C. Gunduz Aras, H. Cakalli and A. Sonmez, Soft matrices on soft multisets in an optimal decision process AIP Conference Proceedings. Vol. 1759. No. 1. AIP Publishing, (2016).
https://doi.org/10.1063/1.4959713
C. Gunduz Aras, A. Sonmez and H. Cakalli, An approach to soft functions. J. Math. Anal. 8.2, 129-138, (2017).
Copyright (c) 2019 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).