The unique solution of some operator equations via fractional differential equations

  • Hojat Afshari University of Bonab
  • L. Khoshvaghti University of Azarbaijan Shahid Madani

Résumé

In this paper we consider the existence and uniqueness of positive solutions to the following operator equation in an ordered Banach space $E$
$$A(x,x)+B(x,x)=x,~x\in P,$$
where $P$ is a cone in $E$. We study an application for fractional differential equations.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Hojat Afshari, University of Bonab

Department of mathematics

Références

Guo D, Lakskmikantham, V: Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. 11(5), 623-632(1987). https://doi.org/10.1016/0362-546X(87)90077-0

Guo D: Fixed points of mixed monotone operators with application. Appl. Anal. 34, 215-224(1988). https://doi.org/10.1080/00036818808839825

Kilbas A A, Srivastava H M, Trujillo, j j: Theory and applications of fractional differential equations. North-Holland Mathematics Studies. 204, 7-10(2006).

Liu. L, Zhang. X, Jiang. J, Wu. Y : The unique solution of a class of sum mixed monotone operator equations and its application to fractional boundary value problems J. Nonlinear Sci. Appl. 9 (2016), 2943-2958. https://doi.org/10.22436/jnsa.009.05.87

Podlubny I: Fractional Differential Equations. Academic Press, San Diego, (1999).

Sang, Y: Existence and uniqueness of fixed points for mixed monotone operators with perturbations, Electronic Journal of Differential Equations, 233(2013)1-16.

Sang, Y: A class of ϕ-concave operators and applications, Fixed Point Theory and Applications, vol. 2013, 2013. https://doi.org/10.1186/1687-1812-2013-274

Publiée
2021-12-18
Rubrique
Articles