Three robust edges stopping functions for image denoising

  • Hicham Rezgui Badji Mokhtar University
  • Messaoud Maouni 20 aout 1955 University
  • Mohammed Lakhdar Hadji Badji Mokhtar University
  • Ghassen Touil 20 aout 1955 University

Résumé

In this paper, we present three strong edge stopping functions for image enhancement. These edge stopping functions have the advantage of effectively removing the image noise while preserving the true edges and other important features. The obtained results show an improved quality for the restored images compared to existing restoration models.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Bibliographies de l'auteur

Hicham Rezgui, Badji Mokhtar University

Department of Mathematics

Messaoud Maouni, 20 aout 1955 University

Department of Mathematics

Mohammed Lakhdar Hadji, Badji Mokhtar University

Department of Mathematics

Ghassen Touil, 20 aout 1955 University

Department of Mathematics

Références

Catte, Francine and Lions, Pierre-Louis and Morel, Jean-Michel and Coll, Tomeu; Image selective smoothing and edge detection by nonlinear diffusion, SIAM Journal on Numerical analysis, 29, No.1, 182-193, (1992). https://doi.org/10.1137/0729012

Tian, Haiying and Cai, Hongmin and Lai, Jian-Huang and Xu, Xiaoyin; Effective image noise removal based on difference eigenvalueImage Processing (ICIP), 2011 18th IEEE International Conference on, 3357-3360, (2011). https://doi.org/10.1109/ICIP.2011.6116392

Monteil, Jerome and Beghdadi, Azeddine; A new interpretation and improvement of the nonlinear anisotropic diffusion for image enhancementIEEE Transactions on Pattern Analysis and Machine Intelligence, 21, No.9, 940-946, (1999). https://doi.org/10.1109/34.790435

Weickert, Joachim; Coherence-enhancing diffusion filtering,International journal of computer vision, 31,No.2-3, 111-127, (1999). https://doi.org/10.1023/A:1008009714131

Yuan, Jianjun and Wang, Jianjun; Perona-malik model with a new diffusion coefficient for image denoising, International Journal of Image and Graphics, 16,No.2, 1650011, (2016). https://doi.org/10.1142/S021946781650011X

Liu, Kui and Tan, Jieqing and Su, Benyue; Adaptive anisotropic diffusion for image denoising based on structure tensor, Digital Home (ICDH), 2014 5th International Conference on, 111-116, (2014). https://doi.org/10.1109/ICDH.2014.29

Rudin, Leonid I and Osher, Stanley and Fatemi, Emad; Nonlinear total variation based noise removal algorithms, Physica D: nonlinear phenomena, 60, No.1-4, 259-268, (1992). https://doi.org/10.1016/0167-2789(92)90242-F

Black, Michael J and Sapiro, Guillermo and Marimont, David H and Heeger, David; Robust anisotropic diffusion, IEEE Transactions on image processing, 7, No.3, 421-432, (1998). https://doi.org/10.1109/83.661192

Perona, Pietro and Malik, Jitendra; Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on pattern analysis and machine intelligence, 12, No.7, 629-639, (1990). https://doi.org/10.1109/34.56205

Whitaker, Ross T and Pizer, Stephen, M.; A multi-scale approach to nonuniform diffusion, CVGIP Image Understanding, 57, 99-99, (1993). https://doi.org/10.1006/ciun.1993.1006

Osher, Stanley and Rudin, Leonid, I.; Feature-oriented image enhancement using shock filters, SIAM Journal on numerical analysis, 27, No.4, 919-940, (1990). https://doi.org/10.1137/0727053

Chen, Shifeng and Liu, Ming and Zhang, Wei and Liu, Jianzhuang; Edge preserving image denoising with a closed form solution, Pattern Recognition, 46, No.3, 976-988, (2013). https://doi.org/10.1016/j.patcog.2012.08.014

Barbu, Tudor; Robust anisotropic diffusion scheme for image noise removal, Procedia Computer Science, 35, No.3, 522-530, (2014). https://doi.org/10.1016/j.procs.2014.08.133

Barbu, Tudor and Morosanu, Costica; Image Restoration using a Nonlinear Second-order Parabolic PDE-based Scheme, Analele Universitatii" Ovidius" Constanta-Seria Matematica, 25, No.1, 48-33, (2017). https://doi.org/10.1515/auom-2017-0003

Kamalaveni, V and Rajalakshmi, R Anitha and Narayanankutty, K. A.; Image denoising using variations of PeronaMalik model with different edge stopping functions, Procedia Computer Science, 58, 673-682, (2015). https://doi.org/10.1016/j.procs.2015.08.087

Li, Xiaoping and Chen, Tongwen; Nonlinear diffusion with multiple edginess thresholds, Pattern Recognition, 27, No.8, 1029-1037, (1994). https://doi.org/10.1016/0031-3203(94)90142-2

Wang, Y Q and Guo, Jichang and Chen, Wufan and Zhang, Wenxue; Image denoising using modified Perona-Malik model based on directional Laplacian, Signal Processing, 93, No.9, 2548-2558, (2013). https://doi.org/10.1016/j.sigpro.2013.02.020

Wang, Zhou and Bovik, Alan C and Sheikh, Hamid R and Simoncelli, Eero P.; Image quality assessment: from error visibility to structural similarity, IEEE transactions on image processing, 13, No.4, 600-612, (2004). https://doi.org/10.1109/TIP.2003.819861

Guo, Zhichang and Sun, Jiebao and Zhang, Dazhi and Wu, Boying; Adaptive Perona-Malik model based on the variable exponent for image denoising, IEEE Transactions on Image Processing, 21, No.3, 958-967, (2012). https://doi.org/10.1109/TIP.2011.2169272

Publiée
2021-12-20
Rubrique
Articles