Liftings of crossed modules in the category of groups with operations

Abstract


In this paper we define the notion of lifting of a crossed module via the morphism in groups with operations and give some properties of this type of liftings. Further we prove that the lifting crossed modules of a certain crossed module are categorically equivalent to the internal groupoid actions on groups with operations, where the internal groupoid corresponds to the crossed module.

Downloads

Download data is not yet available.

Author Biographies

H. Fulya Akız, University of Bozok

Department of Mathematics

Osman Mucuk, University of Erciyes

Department of Mathematics

Tunçar Şahan, University of Aksaray

Department of Mathematics

References

Akız, H. F., Alemdar N., Mucuk, O. and Sahan, T., Coverings of internal groupoids and crossed modules in the category of groups with operations, Georgian Math. J. 20, no. 2 (2013) 223-238. https://doi.org/10.1515/gmj-2013-0021

Alemdar, N. and Mucuk, O., The liftings of R-modules to covering groupoids, Hacet. J. Math. Stat. 41, no. 6 (2012) 813-822.

Baez, J.C., Lauda, A.D., Higher-dimensional algebra V: 2-groups, Theory Appl. Categ., 12 (2004) 423-491.

Brown, R., Higgins, P.J., Sivera, R., Nonabelian Algebraic Topology: filtered spaces, crossed complexes, cubical homotopy groupoids, European Mathematical Society Tracts in Mathematics 15 (2011).

https://doi.org/10.4171/083

Brown, R., Topology and Groupoids, BookSurge LLC, North Carolina (2006).

Brown, R., and ˙ Icen ˙ I, Homotopies and automorphisms of crossed modules of groupoids, Applied Categorical Structures Appl. Categ. Structures 11, no. 2 (2003) 185-206.

Brown, R. and Mucuk, O., Covering groups of nonconnected topological groups revisited, Math. Proc. Cambridge Philos. Soc. 115, no. 1 (1994) 97-110. https://doi.org/10.1017/S0305004100071942

Brown, R., Higher dimensional group theory. In: Low Dimensional Topology, London Math. Soc. Lect. Notes, 48, pp. 215-238. Cambridge Univ. Press, (1982). https://doi.org/10.1017/CBO9780511758935

Brown, R., Huebschmann, J., Identities among relations. In: Low Dimentional Topology, London Math. Soc. Lect. Notes, 48, pp. 153-202. Cambridge Univ. Press (1982). https://doi.org/10.1017/CBO9780511758935.010

Brown, R. and Spencer, C. B., G-groupoids, crossed modules and the fundamental groupoid of a topological group, Nederl. Akad. Wetensch. Proc. Ser. A 79=Indag. Math. 38, no. 4 (1976) 296-302.

https://doi.org/10.1016/1385-7258(76)90068-8

Datuashvili, T., Categorical, homological and homotopical properties of algebraic objects, J. Math. Sci. 225(3) (2017) 383-533. https://doi.org/10.1007/s10958-017-3474-5

Datuashvili, T., Cohomologically trivial internal categories in categories of groups with operations, Appl. Categ. Structures 3 (1995) 221-237. https://doi.org/10.1007/BF00878442

Datuashvili, T., Cohomology of internal categories in categories of groups with operations, Categorical Topology and its Relation to Analysis, algebra and combinatorics, Ed. J. Adamek and S. Mac Lane (Prague, 1988), World Sci. Publishing, Teaneck, NJ, (1989).

Datuashvili, T., Kan extensions of internal functors: Nonconnected case, J. Pure Appl. Algebra 167 (2002) 195-202. https://doi.org/10.1016/S0022-4049(01)00035-4

Datuashvili, T., Whitehead homotopy equivalence and internal category equivalence of crossed modules in categories of groups with operations, Proc. A. Razmadze Math. Inst. 113 (1995) 3-30. https://doi.org/10.1007/BF00878442

Higgins, P.J., Categories and groupoids, Van Nostrand, New York (1971).

Higgins, P.J., Groups with multiple operators, Proc. London Math. Soc. 3(6) (1956) 366-416. https://doi.org/10.1112/plms/s3-6.3.366

Huebschmann, J., Crossed n-fold extensions of groups and cohomology, Comment. Math. Helvetici 55, no. 2 (1980) 302-313. https://doi.org/10.1007/BF02566688

Loday, J.-L., Cohomologie et groupes de Steinberg relatifs, J. Algebra 54,no. 1 (1978) 178-202.

https://doi.org/10.1016/0021-8693(78)90025-X

Lue, A.S.T., Cohomology of groups relative to a variety, J. Algebra 69,no. 1 (1981) 155-174. https://doi.org/10.1016/0021-8693(81)90136-8

Mackenzie, K.C.H., Lie groupoids and Lie algebroids in differential geometry, London Math. Soc. Lecture Note Series 124, Cambridge University Press, (1987). https://doi.org/10.1017/CBO9780511661839

Mucuk, O., Coverings and ring-groupoids, Georgian Math. J. 5, no. 5 (1998) 475-482.

https://doi.org/10.1023/B:GEOR.0000008118.11447.b2

Mucuk, O. and Demir, S., Normality and quotient in crossed modules over groupoids and double groupoids, Turk. J. Math. 42(5)(2018) 2336-2347. https://doi.org/10.3906/mat-1606-126

Mucuk, O., Kilicarslan, B., Sahan T., Alemdar, N., Group-groupoids and monodromy groupoids, Topology Appl. 158(15) (2011) 2034-2042. https://doi.org/10.1016/j.topol.2011.06.048

Mucuk, O. and Sahan, T., Group-groupoid actions and liftings of crossed modules, Georgian Math. J., 26(3) (2019), 437-447. https://doi.org/10.1515/gmj-2018-0001

Mucuk, O., Sahan, T. and Alemdar, N., Normality and quotients in crossed modules and group-groupoids, Appl. Categ. Structures 23, no. 3 (2015) 415-428. https://doi.org/10.1007/s10485-013-9335-6

Orzech, G., Obstruction theory in algebraic categories I, J. Pure Appl. Algebra 2 (1972) 287-314.

https://doi.org/10.1016/0022-4049(72)90008-4

Orzech, G., Obstruction theory in algebraic categories II, J. Pure Appl. Algebra 2 (1972) 315-340.

https://doi.org/10.1016/0022-4049(72)90009-6

Porter, T., Extensions, crossed modules and internal categories in categories of groups with operations, Proc. Edinb. Math. Soc. 30, no. 3 (1987) 373-381. https://doi.org/10.1017/S0013091500026766

Sahan, T., Further remarks on liftings of crossed modules, Hacet. J. Math. Stat., 48(3) (2019) 743-752.

https://doi.org/10.15672/HJMS.2018.554

Temel, S., Normality and quotient in crossed modules over groupoids and 2-Groupoids, Korean J. Math., 27(1) (2019) 151-163.

Whitehead, J.H.C., Note on a previous paper entitled "On adding relations to homotopy group", Ann. of Math. 47 (1946) 806-810. https://doi.org/10.2307/1969237

Whitehead, J.H.C., Combinatorial homotopy II, Bull. Amer. Math. Soc. 55 (1949) 453-496.

https://doi.org/10.1090/S0002-9904-1949-09213-3

Published
2019-10-14