Existence of homoclinic solutions for difference equations on integers via variational method

  • Maisam Boroun Razi University
  • Shapour Heidarkhani Razi University
  • Anderson L. A. De Araujo Universidade Federal de Vi¸çosa

Résumé

In this paper, we are concerned with the existence of at least three distinct  solutions for discrete boundary value problems. The proof of the main result is based on variational   methods. We also provide two examples in order to illustrate the main results.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

R. P. Agarwal, K. Perera, D. O'Regan, Multiple positive solutions of singular discrete p- Laplacian problems via variational methods, Adv. Differ. Equ. 2005 (2005), 93-99. https://doi.org/10.1155/ADE.2005.93

C. Bereanu, P. Jebelean, C. Serban, Periodic and Neumann problems for discrete p-Laplacian, J. Math. Anal. Appl. 399 (2013), 75-87. https://doi.org/10.1016/j.jmaa.2012.09.047

L. H. Bian, H. R. Sun, Q. G. Zhang, Solutions for discrete p-Laplacian periodic boundary value problems via critical point theory, J. Differ. Equ. Appl. 18 (2012), 345-355. https://doi.org/10.1080/10236198.2010.491825

M. Bohner, G. Caristi, S. Heidarkhani, S. Moradi, Existence of at least one homoclinic solution for a nonlinear secondorder difference equation, Inter. J. Nonlinear Sci. Numerical Simul. 20 (2019), 433-439. https://doi.org/10.1515/ijnsns-2018-0223

G. Bonanno, A critical points theorem and nonlinear differential problems, J. Global Optim. 28 (2004), 249-258. https://doi.org/10.1023/B:JOGO.0000026447.51988.f6

G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal. 75 (2012), 2992-3007. https://doi.org/10.1016/j.na.2011.12.003

G. Bonanno, Some remarks on a three critical points theorem, Nonlinear Anal. 54 (2003), 651-665. https://doi.org/10.1016/S0362-546X(03)00092-0

G. Bonanno, P. Candito, Infinitely many solutions for a class of discrete nonlinear boundary value problems, Appl. Anal. 884 (2009), 605-616. https://doi.org/10.1080/00036810902942242

G. Bonanno, P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Differ. Equ. 244 (2008), 3031-3059. https://doi.org/10.1016/j.jde.2008.02.025

G. Bonanno, P. Candito, Nonlinear difference equations investigated via critical point methods, Nonlinear Anal. 70 (2009), 3180-3186. https://doi.org/10.1016/j.na.2008.04.021

G. Bonanno, B. Di Bella, A boundary value problem for fourth-ordere lastic beam equations, J. Math. Anal. Appl. 343 (2008), 1166-1176. https://doi.org/10.1016/j.jmaa.2008.01.049

A. Cabada, C. Li, S. Tersian, On homoclinic solutions of a semilinear p-Laplacian difference equation with periodic coefficients, Adv. Differ. Equ. 2010 (2010), 1-17. https://doi.org/10.1155/2010/195376

P. Candito, G. D'Aguı, Three solutions to a perturbed nonlinear discrete Dirichlet problem, J. Math. Anal. Appl. 375 (2011), 594-601. https://doi.org/10.1016/j.jmaa.2010.09.050

S. Heidarkhani, G. A. Afrouzi, G. Caristi, J. Henderson, S. Moradi, A variational approach to difference equations, J. Differ. Equ. Appl. 22 (2017), 1761-1776. https://doi.org/10.1080/10236198.2016.1243671

S. Heidarkhani, G. A. Afrouzi, S. Moradi, G. Caristi, Existence of three solutions for multi-point boundary value problems, J. Nonlinear Funct. Anal. 2017 (2017), Article ID 47. https://doi.org/10.23952/jnfa.2017.47

S. Heidarkhani, A. Cabada, G. A. Afrouzi, S. Moradi, G. Caristi, A variational approach to perturbed impulsive fractional differential equations, J. Comput. Appl. Math. 341 (2018), 42-60. https://doi.org/10.1016/j.cam.2018.02.033

S. Heidarkhani, A.L.A. De Araujo, G. A. Afrouzi, S. Moradi, Multiple solutions for Kirchhoff- type problems with variable exponent and nonhomogeneous Neumann conditions, Math. Nachr. 291 (2018), 326-342. https://doi.org/10.1002/mana.201600425

S. Heidarkhani, S. Moradi, S. A. Tersian, Three solutions for second-order boundary-value problems with variable exponents, Electron. J. Qual. Theory Differ. Equ. 33 (2018), 1-19. https://doi.org/10.14232/ejqtde.2018.1.33

J. Henderson, H. B. Thompson, Existence of multiple solutions for second order discrete boundary value problems, Comput. Math. Appl. 43 (2002), 1239-1248. https://doi.org/10.1016/S0898-1221(02)00095-0

A. Iannizzotto, S. Tersian, Multiple homoclinic solutions for the discrete p-Laplacian via critical point theory, J. Math. Anal. Appl. 403 (2013), 173-182. https://doi.org/10.1016/j.jmaa.2013.02.011

L. Kong, Existence of solutions to boundary value problems arising from the fractional advection dispersion equation, Electron. J. Diff. Equ. 2013 (2013), pp. 1-15.

L. Kong, Homoclinic solutions for a higher order difference equation with p-Laplacian, Indag. Math. 27 (2016), no.1, 124-146. https://doi.org/10.1016/j.indag.2015.08.007

L. Kong, Homoclinic solutions for a second order difference equation with p-Laplacian, Appl. Math. Comput. 247 (2014), 1103-1121. https://doi.org/10.1016/j.amc.2014.09.069

H. Liang, P. Weng, Existence and multiple solutions for a second-order difference boundary value problem via critical point, J. Math. Anal. Appl. 326 (2007), 511-520. https://doi.org/10.1016/j.jmaa.2006.03.017

B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000), 401-410. https://doi.org/10.1016/S0377-0427(99)00269-1

B. Ricceri, On a three critical points theorem, Arch. Math. 75 (2000), 220-226. https://doi.org/10.1007/s000130050496

R. Steglinski, On homoclinic solutions for a second order difference equation with p-Laplacian, Discrete Continuous Dyn. Syst.-Ser. B 23 (2018), 487-492. https://doi.org/10.3934/dcdsb.2018033

R. Steglinski, On sequences of large homoclinic solutions for a difference equations on integers, Adv. Differ. Equ. 2016 (2016), 1-11. https://doi.org/10.1186/s13662-016-0771-0

R. Steglinski, On sequences of large solutions for discrete anisotropic equations, Electronic J. Qual. Theo. Differ. Equ. 2015, No. 25, 1-10. https://doi.org/10.14232/ejqtde.2015.1.25

R. Steglinski, Sequences of small homoclinic solutions for difference equations on integers, Electron. J. Differential Equations, Vol. 2017 (2017), No. 228, pp. 1-12. https://doi.org/10.1186/s13662-016-0771-0

L. Zhilong, Existence of positive solutions of superlinear second-order Neumann boundary value problem, Nonlinear Anal. 72 (2010), 3216-3221. https://doi.org/10.1016/j.na.2009.12.021

D. B. Wang, W. Guan, Three positive solutions of boundary value problems for p-Laplacian difference equations, Comput. Math. Appl. 55 (2008), 1943-1949. https://doi.org/10.1016/j.camwa.2007.08.033

P. J. Y. Wong, L. Xie, Three symmetric solutions of Lidstone boundary value problems for difference and partial difference equations, Comput. Math. Appl. 45 (2003), 1445-1460. https://doi.org/10.1016/S0898-1221(03)00102-0

Publiée
2022-01-30
Rubrique
Research Articles