Truncation and convergence dynamics: KdV Burgers model in the sense of Caputo derivative

  • Asıf Yokuş Firat University

Résumé

This study examines the time fractional KdV Burgers equation with the initial conditions by using the extended result on Caputo formula, finite difference method (FDM). For this reason, various fractional differential operators are defined and analyzed. In order to check the stability of the numerical scheme, the Fourier-von Neumann technique is used. By presenting an example of KdV Burgers equation above mentioned issues are discussed and numerical solutions of the error estimates have been found for the FDM. For the errors in $L_2$ and $L_\infty$ the method accuracy has been controlled. Moreover, the obtained results have been compared with the exact solution for different cases of non-integer order and the behavior of the potentials u is presented as a graph. The numerical results have been shown in tables.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

M. Wang, X. Li and J. Zhang, The (G'/G)-expansion method and Traveling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics, Phys. Lett. A 372, 417-423 (2008). https://doi.org/10.1016/j.physleta.2007.07.051

A. Yokus, M. Tuz, An application of a new version of (G′ /G)-expansion method. In AIP Conference Proceedings (Vol. 1798, No. 1, p. 020165) AIP Publishing (2017). https://doi.org/10.1063/1.4972757

A. Yokus, Comparison of Caputo and conformable derivatives for time-fractional Korteweg-de Vries equation via the finite difference method. International Journal of Modern Physics B, 32(29), 1850365 (2018). https://doi.org/10.1142/S0217979218503654

F. Dusunceli,, E. Celik, Numerical solution for high-order linear complex differential equations with variable coefficients. Numerical Methods for Partial Differential Equations, 34(5), 1645-1658 (2018). https://doi.org/10.1002/num.22222

H. Bulut, A. T. Sulaiman, H. M. Baskonus, A. A. Sandulyak, New solitary and optical wave structures to the (1+1)-dimensional combined KdV-mKdV equation. Optik, 135, 327-336 (2017). https://doi.org/10.1016/j.ijleo.2017.01.071

A. Yokus, H. Bulut, Numerical simulation of KdV equation by finite difference method. Indian Journal of Physics, 92(12), 1571-1575 (2018). https://doi.org/10.1007/s12648-018-1207-3

H. Bulut, F. B. M. Belgacem, H. M. Baskonus, Some New Analytical Solutions for the Nonlinear Time-Fractional KdV-Burgers-Kuramoto Equation. parameters, 2, 3 (2015).

A. Yokus, Numerical Solutions of Time Fractional Korteweg-de Vries Equation and Its Stability Analysis. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 353-361 (2019). https://doi.org/10.31801/cfsuasmas.420771

R. Najafi, G. D. Kucuk, E. Celik, Modified iteration method for solving fractional gas dynamics equation. Mathematical Methods in the Applied Sciences, 40(4), 939-946 (2017). https://doi.org/10.1002/mma.4023

A. Yokus, H. M. Baskonus, T. A. Sulaiman, H. Bulut, Numerical simulation and solutions of the two-component second order KdV evolutionarysystem, Numerical Methods for Partial Differential Equations, In press, corrected proof (2017). https://doi.org/10.1002/num.22192

K. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993).

I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

K. B. Oldham and J. Spanier, The Fractional Calculus. Academic Press, New York (2006).

A. Yokus and D. Kaya, Conservation laws and a new expansion method for sixth order Boussinesq equation, AIP Conf. Proc. 1676, 020062 (2015). https://doi.org/10.1063/1.4930488

E. Sousa, Finite Difference Approximates for a Fractional Advection Diffusion Problem. J. Comput. Phys. 228 4038-4054 (2009). https://doi.org/10.1016/j.jcp.2009.02.011

M. M. Meerschaert and C. Tadjeran, Finite Difference Approximations for Fractional Advection-Dispersion Flow Equations. J. Comput. Appl. Math. 172 65-77 (2004). https://doi.org/10.1016/j.cam.2004.01.033

I. Aziz, M. Asif, Haar wavelet collocation method for three-dimensional elliptic partial differential equations. Computers & Mathematics with Applications, 73(9), 2023-2034 (2017). https://doi.org/10.1016/j.camwa.2017.02.034

F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput. 191 2-20 (2007). https://doi.org/10.1016/j.amc.2006.08.162

N. Ozdemir, M. Yavuz, Numerical Solution of Fractional Black- Scholes Equation by Using the Multivariate Pade Approximation. Acta Physica Polonica A, 132(3) 1050-1053 (2017). https://doi.org/10.12693/APhysPolA.132.1050

A. Esen, T. A. Sulaiman, H. Bulut, H. M. Baskonus, Optical solitons to the space-time fractional (1+ 1)-dimensional coupled nonlinear Schr¨odinger equation. Optik, 167, 150-156 (2018). https://doi.org/10.1016/j.ijleo.2018.04.015

M. Suba¸sı, H. Durur, On the stability of the solution in an optimal control problem for a Schr¨odinger equation. Applied Mathematics and Computation, 249, 521-526 (2014). https://doi.org/10.1016/j.amc.2014.10.069

M. Yavuz, N. Ozdemir, A Quantitative Approach to Fractional Option Pricing Problems with Decomposition Series. Konuralp Journal of Mathematics, 6(1) 102-109 (2018).

L. Su, W. Wang, and Q. Xu, Finite difference methods for fractional dispersion equations, Appl. Math. Comput. 216 3329-3334 (2010). https://doi.org/10.1016/j.amc.2010.04.060

S.B. Yuste, Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216 264-274 (2006). https://doi.org/10.1016/j.jcp.2005.12.006

I. Aziz, M. Ahmad, Numerical solution of two-dimensional elliptic PDEs with nonlocal boundary conditions. Computers Mathematics with Applications, 69(3) 180-205 (2015). https://doi.org/10.1016/j.camwa.2014.12.003

A. M. Wazwaz, Handbook of Differential Equations: Evolutionary Equations, 4 (2008).

W. Chen, L. Ye and H. Sun, Fractional diffusion equations by the Kansa method, Comput. Math. Appl. 59 1614-1620 (2010). https://doi.org/10.1016/j.camwa.2009.08.004

A. Yokus, D. Kaya, Numerical and exact solutions for time fractional burgers equation, Journal of Nonlinear Sciences and Applications 10 (7), 3419-3428 (2017). https://doi.org/10.22436/jnsa.010.07.06

Publiée
2022-01-26
Rubrique
Articles