On explicit evaluation of ratio’s of theta function which is analogous to Ramanujan’s function am,n
Résumé
In this article, Ramanujan defined am,n[3], Dharmendra. B. N and S. Vasanth Kumar defined Em,n[5] for any positive real numbersm and n involving Ramanujan’s product of theta-functions. We established new relation between am,n and Em,n and explicit evaluations of Em,n.
Téléchargements
Références
B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991. https://doi.org/10.1007/978-1-4612-0965-2
B. C. Berndt, Ramanujan's Notebooks, Part IV, Springer-Verlag, New York, 1994. https://doi.org/10.1007/978-1-4612-0879-2
B. C. Berndt, Ramanujan's Notebooks, Part V, Springer-Verlag, New York, 1997.
B. C. Berndt, H. H. Chan and L. C. Zhang, Ramanujan's remarkable product of the theta-function, Proc. Edinburgh Math. Soc., 40, (1997), 5 https://doi.org/10.1017/S0013091500024032
B. N. Dharmendra and S. Vasanth Kumar, Theorems on Analogous of Ramanujan's Remarkable Product of ThetaFunction and their Explicit Evaluations. Boletim da Sociedade Paranaense de Matematica. (2019)
M. S. Mahadeva Naika and B. N. Dharmendra, On some new general theorems for the explicit evaluations of Ramanujan's remarkable product of theta-function Ramanujan J. 15(3), (2008), 349-366. https://doi.org/10.1007/s11139-007-9081-1
M. S. Mahadeva Naika, B. N. Dharmendra and K. Shivashankar, On some new explicit evaluations of Ramanujan's remarkable product of theta-function, South East Asian J. Math. Math Sci., 5(1) 107-119 MR2301684 (2008d: 33012) (2006).
M. S. Mahadeva Naika and M. C. Maheshkumar, Explicit evaluations of Ramanujan's remarkable product of thetafunction, Adv. Stud. Contemp. Math., 13(2), 235-254 (2006).
M. S. Mahadeva Naika, M. C. Maheshkumar and K. Sushan Bairy, On some remarkable product of theta-function, Aust. J. Math. Anal. Appl., 5(1), 1-15 (2008). https://doi.org/10.1007/s11139-007-9081-1
Nipen Saikia, Some Properites, Explicit Evaluation and Applications of Ramanujan's Remarkable Product of ThetaFunctions, Acta Math Vietnam, Journal of Mathematics, (2015). https://doi.org/10.1007/s40306-014-0106-8
S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.
S. Ramanujan, The lost notebook and other unpublished papers, Narosa, New Delhi, 1988.
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).