Cofficient estimates for a general Subclass of bi-univalent functions

  • Khosrow Hosseinzadeh Shahrood University of Technology

Résumé

‎In this paper‎, ‎we introduce and investigate an interesting subclass‎ ‎${\cal{S}}^{h,p}_{\Sigma}(A,B,C,\lambda)$ of bi-univalent functions in the open unit disk $\mathbb{U}$‎. ‎Furthermore‎, ‎we find estimates on the $|a_2|$ and $|a_3|$‎ ‎coefficients for functions in this subclass‎. ‎The coefficient bounds presented here generalize some recent works of several earlier authors‎.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

Brannan, D. A., Taha, T. S., On some classes of bi-univalent functions, Studia Universitatis Babes-Bolyai, Series Mathematica 31, 70-77, (1986).

Brannan, D. A., Clunie, J., Aspect of contemporary complex analysis, Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham, Academic Press, New york and London, 1980.

Breaz, D., Breaz, N., Sirvastava, H. M., An extention of the univalent conditions for a family of integral operators, Appl. Math. Lett. 22, 41-44, (2009). https://doi.org/10.1016/j.aml.2007.11.008

Caglar, M., Orhan, H., Ya˘gmur, N., Coefficient bounds for new subclasses of bi-univalent functions, Filomat. 27, 1165-1171, (2013). https://doi.org/10.2298/FIL1307165C

Duren, P. L., Univalent Functions, Springer-Verlag, New York, Berlin, 1983.

Lewin, M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18, 63-68, (1967). https://doi.org/10.1090/S0002-9939-1967-0206255-1

Magesh, N., Yamini, J., Coefficient bounds for a certain subclass of bi-univalent functions , International Mathematical Forum. 8, 1337-1344, (2013). https://doi.org/10.12988/imf.2013.3595

Netanyahu, E., The minimal distance of the image boundryfromthe origin and second coefficient of a univalent functions in |z| < 1, Arch. Rational Mech. Anal. 32, 100-112, (1969). https://doi.org/10.1007/BF00247676

Srivastava, H. M., Bulut, S., Caglar, M., Ya˘gmur,r, N., Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat. 27, 831-842, (2013). https://doi.org/10.2298/FIL1305831S

Srivastava, H. M., Mishra, A. K., Gochhayat, P., Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23, 1188-1192, (2010). https://doi.org/10.1016/j.aml.2010.05.009

Xiao-Fei-li, An-Ping Wang, Two new subclasses of bi-univalent functions, International Mathematical Forum. 7, 1495-1504, (2012).

Zireh, A., Analouei Adegani, E., Bulut, S., Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination, Bull. Belg. Math. Soc. Simon Stevin., 23, 487-504, (2016). https://doi.org/10.36045/bbms/1480993582

Zireh, A., Analouei Adegani, E., Bidkham, M., Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate, Math. Slovaca, 68, 369-378, (2018). https://doi.org/10.1515/ms-2017-0108

Publiée
2022-02-04
Rubrique
Proceedings