Symmetricity of rings relative to the prime radical
Resumo
In this paper, we introduce and study a strict generalization of symmetric rings. We call a ring $R$ \textit{`$P$-symmetric' } if for any $a,\, b,\, c\in R,\, abc=0$ implies $bac\in P(R)$, where $P(R)$ is the prime radical of $R$. It is shown that the class of $P$-symmetric rings lies between the class of central symmetric rings and generalized weakly symmetric rings. Relations are provided between $P$-symmetric rings and some other known classes of rings. From an arbitrary $P$-symmetric ring, we produce many families of $P$-symmetric rings.
Downloads
Referências
D. D. Anderson, V. Camillo, Armendariz rings and Gaussian rings, Comm. in Algebra 26(7), 2265-2272, (1998). https://doi.org/10.1080/00927879808826274 DOI: https://doi.org/10.1080/00927879808826274
H. Chen, Rings Related to Stable Range Conditions, Series in Algebra 11, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. https://doi.org/10.1142/8006 DOI: https://doi.org/10.1142/8006
Z. Liang, Y. Gang, On weakly reversible rings, Acta Math. Univ. Comenianae 76(2), 189-192, (2007).
G. Kafkas, B. Ungor, S. Halicioglu, A. Harmanci, Generalized symmetric rings, Algebra Discrete Math. 12(2), 72-84, (2011).
H. Kose, B. Ungor, Semicommutativity of the rings relative to prime radical, Comment. Math. Univ. Carolin. 56(4), 401-415, (2015). https://doi.org/10.14712/1213-7243.2015.140 DOI: https://doi.org/10.14712/1213-7243.2015.140
N. H. McCoy, The Theory of Rings, Chelsea Publishing Company, New York, 1973.
J. Lambok, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14, 359-368, (1971). https://doi.org/10.4153/CMB-1971-065-1 DOI: https://doi.org/10.4153/CMB-1971-065-1
L. Ouyang, H. Chen, On weak symmetric rings, Comm. Algebra 38(2), 697-713, (2010). https://doi.org/10.1080/00927870902828702 DOI: https://doi.org/10.1080/00927870902828702
M. B. Rege, S. Chhawchharia, Armendariz rings, Proc. Japan Acad. 73(A), 14-17, (1997). https://doi.org/10.3792/pjaa.73.14 DOI: https://doi.org/10.3792/pjaa.73.14
J. Wei, Generalized weakly symmetric rings, J. Pure Appl. Algebra 218, 1594-1603, (2014). https://doi.org/10.1016/j.jpaa.2013.12.011 DOI: https://doi.org/10.1016/j.jpaa.2013.12.011
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).