Some fixed point theorems in generalized M-fuzzy metric space
Résumé
In this paper, we define the expansive mapping in $G$-metric space and we prove some fixed point theorems in generalized M-fuzzy (GM-fuzzy) Metric Space.
Téléchargements
Références
A. Deb Ray and P. K. Saha, Fixed point theorems on Generalized Fuzzy Metric spaces, Hacettepe Jour. Math. Statistics, 39(1)(2010), 1-9.
B. C. Dhange, Generalized metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc., 84(4)(1992) 329-336
A. George, and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64(3) (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7 DOI: https://doi.org/10.1016/0165-0114(94)90162-7
O. Kramosil, and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernelika. 11 (1975), 326-334.
Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for Mapping on complete G-metric spaces, Fixed Point Theory Appl., 2008(2008) article ID 189870, https://doi.org/10.1155/2008/189870 DOI: https://doi.org/10.1155/2008/189870
Z. Mustafa, A new structure for generalized metric spaces - with application to fixed point theory, Ph.D. Thesis, the university of New Castle, Australia, 2005.
Z. Mustafa and B. Sims, A new approach to generalized metric spaces, Jour. Nonlinear Conv. Anal., 7(2) (2006), 289-297
Z. Mustafa, F. Awawdeh and W. Shatanawi, Fixed point theorem for expansive mapping in G-metric spaces, Int. J. Contemp. Math, Sci., 5(50)(2010), 2463-2472.
S. Sedghi, N. Shobe and H. Zhou, A common fixed point theorem in D*-metric spaces, Fixed Point Theory Appl., 2007(2007) Article ID 27906, 1-13 https://doi.org/10.1155/2007/27906 DOI: https://doi.org/10.1155/2007/27906
G.P. Sun and K. Yang, Generalized fuzzy metric spaces with properties, Research Journal of Applied Sciences, Engineering and Technology, 2(7)(2010) 673-678.
B. C. Tripathy and S. Borgogain, Some classes of difference sequence spaces of fuzzy real numbers defined by Orlicz function, Advances in Fuzzy Systems, 2011), Article ID216414, 6 pages. https://doi.org/10.1155/2011/216414 DOI: https://doi.org/10.1155/2011/216414
B. C. Tripathy and A. J. Dutta, On I-acceleration convergence of sequences of fuzzy real numbers, Math. Modell. Analysis, 17(4)(2012), 549-557. https://doi.org/10.3846/13926292.2012.706656 DOI: https://doi.org/10.3846/13926292.2012.706656
B. C. Tripathy, S. Paul and N. R. Das, Banach's and Kannan's fixed point results in fuzzy 2-metric spaces, Proyecciones J. Math., 32(4)(2013), 359-375. https://doi.org/10.4067/S0716-09172013000400005 DOI: https://doi.org/10.4067/S0716-09172013000400005
B. C. Tripathy, S. Paul and N. R. Das, A fixed point theorem in a generalized fuzzy metric space, Boletim da Sociedade Paranaense de Matem'atica, 32(2)(2014), 221-227. https://doi.org/10.5269/bspm.v32i2.20896 DOI: https://doi.org/10.5269/bspm.v32i2.20896
B. C. Tripathy, S. Paul and N. R. Das ,Fixed point and periodic pint theorems in fuzzy metric space, Songklanakarin Journal of Science and Technology, 37(1)(2015), 89-92.
B. C. Tripathy and G.C. Ray On mixed fuzzy topological spaces and countability, Soft Computing, 16(10)(2012), 1691-1695. https://doi.org/10.1007/s00500-012-0853-1 DOI: https://doi.org/10.1007/s00500-012-0853-1
S. Z. Wang, B. Y. Li, Z. M. Gao and K. Iseki, Some Fixed point theorem on Extension Mappings, Math. Japonica, 29(4) (1984), 631-636
L. A. Zadeh, Fuzzy Sets, Inf. control, 8(1965), 338-353 https://doi.org/10.1016/S0019-9958(65)90241-X DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).