Some fixed point theorems in generalized M-fuzzy metric space

  • Binod Chandra Tripathy Tripura University
  • Sudipta Paul Gauhati University
  • Nandaram Das Gauhati University

Résumé

In this paper, we define the expansive mapping in $G$-metric space and we prove some fixed point theorems in generalized M-fuzzy (GM-fuzzy) Metric Space.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Binod Chandra Tripathy, Tripura University

Department of Mathematics

Professor

Références

A. Deb Ray and P. K. Saha, Fixed point theorems on Generalized Fuzzy Metric spaces, Hacettepe Jour. Math. Statistics, 39(1)(2010), 1-9.

B. C. Dhange, Generalized metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc., 84(4)(1992) 329-336

A. George, and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64(3) (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7 DOI: https://doi.org/10.1016/0165-0114(94)90162-7

O. Kramosil, and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernelika. 11 (1975), 326-334.

Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for Mapping on complete G-metric spaces, Fixed Point Theory Appl., 2008(2008) article ID 189870, https://doi.org/10.1155/2008/189870 DOI: https://doi.org/10.1155/2008/189870

Z. Mustafa, A new structure for generalized metric spaces - with application to fixed point theory, Ph.D. Thesis, the university of New Castle, Australia, 2005.

Z. Mustafa and B. Sims, A new approach to generalized metric spaces, Jour. Nonlinear Conv. Anal., 7(2) (2006), 289-297

Z. Mustafa, F. Awawdeh and W. Shatanawi, Fixed point theorem for expansive mapping in G-metric spaces, Int. J. Contemp. Math, Sci., 5(50)(2010), 2463-2472.

S. Sedghi, N. Shobe and H. Zhou, A common fixed point theorem in D*-metric spaces, Fixed Point Theory Appl., 2007(2007) Article ID 27906, 1-13 https://doi.org/10.1155/2007/27906 DOI: https://doi.org/10.1155/2007/27906

G.P. Sun and K. Yang, Generalized fuzzy metric spaces with properties, Research Journal of Applied Sciences, Engineering and Technology, 2(7)(2010) 673-678.

B. C. Tripathy and S. Borgogain, Some classes of difference sequence spaces of fuzzy real numbers defined by Orlicz function, Advances in Fuzzy Systems, 2011), Article ID216414, 6 pages. https://doi.org/10.1155/2011/216414 DOI: https://doi.org/10.1155/2011/216414

B. C. Tripathy and A. J. Dutta, On I-acceleration convergence of sequences of fuzzy real numbers, Math. Modell. Analysis, 17(4)(2012), 549-557. https://doi.org/10.3846/13926292.2012.706656 DOI: https://doi.org/10.3846/13926292.2012.706656

B. C. Tripathy, S. Paul and N. R. Das, Banach's and Kannan's fixed point results in fuzzy 2-metric spaces, Proyecciones J. Math., 32(4)(2013), 359-375. https://doi.org/10.4067/S0716-09172013000400005 DOI: https://doi.org/10.4067/S0716-09172013000400005

B. C. Tripathy, S. Paul and N. R. Das, A fixed point theorem in a generalized fuzzy metric space, Boletim da Sociedade Paranaense de Matem'atica, 32(2)(2014), 221-227. https://doi.org/10.5269/bspm.v32i2.20896 DOI: https://doi.org/10.5269/bspm.v32i2.20896

B. C. Tripathy, S. Paul and N. R. Das ,Fixed point and periodic pint theorems in fuzzy metric space, Songklanakarin Journal of Science and Technology, 37(1)(2015), 89-92.

B. C. Tripathy and G.C. Ray On mixed fuzzy topological spaces and countability, Soft Computing, 16(10)(2012), 1691-1695. https://doi.org/10.1007/s00500-012-0853-1 DOI: https://doi.org/10.1007/s00500-012-0853-1

S. Z. Wang, B. Y. Li, Z. M. Gao and K. Iseki, Some Fixed point theorem on Extension Mappings, Math. Japonica, 29(4) (1984), 631-636

L. A. Zadeh, Fuzzy Sets, Inf. control, 8(1965), 338-353 https://doi.org/10.1016/S0019-9958(65)90241-X DOI: https://doi.org/10.1016/S0019-9958(65)90241-X

Publiée
2022-12-21
Rubrique
Research Articles