On the maximum principle for the discrete p-laplacian with sign-changing weight

Résumé

This work deals with the maximum principle for the discrete Neumann or Dirichlet problem
-Δφp(Δu(k - 1)) =  λm(k)φp(u(k))+ h(k) in [1, n].
We study the existence and nonexistence of positive solution and its uniqueness.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Omar Chakrone, University Mohammed 1st

Department of Mathematics and Computer, Laboratory Nonlinear Analysis

Références

A. Anane, O. Chakrone, N, Moradi, Maximum and Anti-Maximum principles for the p-Laplacian with a Nonlinear Boundary condition, Electronic Journal of Differential Equations, Conference 14 (2006) 95-107.

M. Chehabi, O.Chakrone, Properties of the First Eigenvalue with Sign-changing Weight of the Discrete p-Laplacian and Applications, Bol. Soc. Paran. Mat. (3s.) v.36 2 (2018) 151-167. https://doi.org/10.5269/bspm.v36i2.31977

H. Chehabi, O Chakrone, M. Chehabi, On the antimaximum principle for the discrete p-Laplacian with sign-changing weight, Applied Mathematics and Computation 342 (2019) 112-117. https://doi.org/10.1016/j.amc.2018.09.012

Y. Huang, On eigenvalue problems for the p-Laplacian with Neumann boundary conditions, Proc. Amer. Math. Soc. 109 (1990) 177-184. https://doi.org/10.1090/S0002-9939-1990-1010800-9

W. Allegretto, Y. Huang, A Picone's identity for the p-Laplacian and applications, Nonlinear Anal. T.M.A. 32 (1998) 819-830. https://doi.org/10.1016/S0362-546X(97)00530-0

R. L. Frank, R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal. 255 (2008), 3407-3430. https://doi.org/10.1016/j.jfa.2008.05.015

T. Godoy, J. P. Gossez, S. Paczka, On the antimaximum principle for the p-Laplacian with indefinite weight, Nonlinear Analysis. 51 (2002) 449-467. https://doi.org/10.1016/S0362-546X(01)00839-2

T. Godoy, J. P. Gossez, S. Paczka, Antimaximum principle for elliptic problems with weight, Electr.J. Differential Equations 1999 (1999) 1-15.

Publiée
2022-12-23
Rubrique
Research Articles