Common fixed, coupled coincidence and common coupled fixed point results in hyperbolic valued metric spaces

Résumé

In this paper, we obtain existence of unique common fixed point for a contraction mapping on hyperbolic valued metric spaces, and also develop some coupled coincidence point and common coupled fixed point results for two mappings satisfying various contractive conditions in such spaces. We also give some illustrative examples to validate our results.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math., 3(1), 133-181, (1922). https://doi.org/10.4064/fm-3-1-133-181

A. Arvanitakis, A proof of the generalized Banach contraction conjecture, Proceedings of the American Mathematical Society, 131(12), 3647-3656 (2003). https://doi.org/10.1090/S0002-9939-03-06937-5

T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis: Theory, Methods & Applications, 65(7), 1379-1393 (2006). https://doi.org/10.1016/j.na.2005.10.017

L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, Journal of mathematical Analysis and Applications, 332(2), 1468-1476 (2007). https://doi.org/10.1016/j.jmaa.2005.03.087

J. J. Nieto, R. Rodrıguez-Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Mathematica Sinica, English Series, 23(12), 2205-2212 (2007). https://doi.org/10.1007/s10114-005-0769-0

P. N. Dutta, B. S. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory and Applications, 2008(1), 406368 (2008). https://doi.org/10.1155/2008/406368

V. Lakshmikantham, L. Ciric, ' Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis: Theory, Methods & Applications, 70(12), 4341-4349 (2009). https://doi.org/10.1016/j.na.2008.09.020

M. Abbas, M. A. Khan, S. Radenovic, Common coupled fixed point theorems in cone metric spaces for w−compatible mappings, Applied Mathematics and Computation, 217(1), 195-202 (2010). https://doi.org/10.1016/j.amc.2010.05.042

J. Harjani, B. Lopez, K. Sadarangani, Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear Analysis: Theory, Methods & Applications, 74(5), 1749-1760 (2011). https://doi.org/10.1016/j.na.2010.10.047

A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numerical Functional Analysis and Optimization, 32(3), 243-253 (2011). https://doi.org/10.1080/01630563.2011.533046

K. Sitthikul, S. Saejung, Some fixed point theorems in complex valued metric spaces, Fixed Point Theory and Applications, 2012(1), 189 (2012). https://doi.org/10.1186/1687-1812-2012-189

N. Hussain, A. Azam, J. Ahmad, M. Arshad, Common fixed point results in complex valued metric spaces with application to integral equations, Filomat, 28(7), 1363-1380 (2014). https://doi.org/10.2298/FIL1407363H

O. Alqahtani, E. Karapınar, P. Shahi, Common fixed point results in function weighted metric spaces, Journal of Inequalities and Applications, 2019(1):164, (2019). https://doi.org/10.1186/s13660-019-2123-6

B. Alqahtani, A. Fulga, E. Karapınar, V. Rakoˇcevi'c, Contractions with rational inequalities in the extended b−metric space, Journal of Inequalities and Applications , 2019(1):220 https://doi.org/10.1186/s13660-019-2176-6

F. Rouzkard, M. Imdad, Some common fixed point theorems on complex valued metric spaces, Computers & Mathematics with Applications, 64(6), 1866-1874 (2012). https://doi.org/10.1016/j.camwa.2012.02.063

M. A. Kutbi, A. Azam, J. Ahmad, C. Di Bari, Some common coupled fixed point results for generalized contraction in complex-valued metric spaces, Journal of Applied Mathematics, 2013, Article ID 352927, 10 pages (2013). https://doi.org/10.1155/2013/352927

W. Sintunavarat, Y. J. Cho, P. Kumam, Urysohn integral equations approach by common fixed points in complex-valued metric spaces, Advances in Difference Equations, 2013:49 (2013). https://doi.org/10.1186/1687-1847-2013-49

P. K. Jhade, M. S. Khan, Some coupled coincidence and common coupled fixed point theorems in complex-valued metric spaces, Facta Universitatis, Series: Mathematics and Informatics, 29(4), 385-395 (2015).

W. Shatanawi, J. A. Norani, H. Alsamir, M. A. Kutbi, Some common fixed points of multivalued mappings on complexvalued metric spaces with homotopy result, J. Nonlinear Sci. Appl., 10, 3381-3396 (2017). https://doi.org/10.22436/jnsa.010.07.02

F. Rouzkard, M. Imdad, Coupled coincidence point and common coupled fixed point theorems in complex valued metric spaces, International Journal of Nonlinear Analysis and Applications, 8(2), 145-158 (2017).

R. Kumar, H. Saini, Topological bicomplex modules, Advances in applied Clifford algebras, 26(4), 1249-1270 (2016). https://doi.org/10.1007/s00006-016-0646-1

N. Sager, B. Sa˘gır, Fixed points of hyperbolic contraction mappings on hyperbolic valued metric spaces, Sarajevo Journal of Mathematics(in review) (2020).

D. Alpay, M. E. Luna-Elizarrar'as, M. Shapiro, D. C. Struppa, Basics of functional analysis with bicomplex scalars, and bicomplex Schur analysis, Springer Science & Business Media, (2014). https://doi.org/10.1007/978-3-319-05110-9

M. E. Luna-Elizarrar'as, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex holomorphic functions: The algebra, geometry and analysis of bicomplex numbers, Birkhauser, (2015). https://doi.org/10.1007/978-3-319-24868-4

Publiée
2022-12-23
Rubrique
Articles